Abstract:【Objective】 The investigation of soil nutrient content and stoichiometric ratios is of great significance for gaining a deeper understanding of the nutrient cycling and balance mechanisms within ecosystems. The Xizang Autonomous Region, situated on the southwestern Qinghai-Tibet Plateau, functions both as an ecologically fragile area and a crucial ecological security barrier for China. This research examines the soil nutrient stoichiometric ratios and their influencing factors under different land use patterns in the alpine region of the Xizang Autonomous Region. The objective was to assess nutrient limitations in the study area and provide a foundation for effective nutrient management in these sensitive ecosystems. 【Method】 This study focused on three land use types (farmland, forestland, and grassland) across an east-west transect in the eastern Xizang Autonomous Region. Soil samples were collected at different depths (0-10 cm, 10-20 cm, and 20-30 cm) to measure basic physical and chemical properties (including clay content (Cy), bulk density (BD), porosity (Ps), soil water content (SWC), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN) and available phosphorus (AP)). The longitude (LON), latitude (LAT), and altitude (ALT) of each sampling site were recorded using GPS, while environmental factors such as mean annual temperature (MAT), mean annual evaporation (Ea), mean annual precipitation (MAP), and vegetation normalization index NDVI (NDVI) were extracted using ArcGIS. Variance analysis was employed to assess differences in the contents of SOC, TN, AN, TP, and AP, along with their corresponding nutrient stoichiometry ratios (C:N, C:P, N:P, and AN:AP) among farmland, forestland, and grassland. Additionally, correlation analysis and redundancy analysis were conducted to identify the factors influencing nutrient stoichiometric ratios across the three land use types. 【Result】 The findings revealed no significant differences in SOC, TN, or AN contents among the different land use types (P > 0.05). However, TP and AP contents in farmland were significantly higher than those in forestland and grassland. Moreover, soil C:N did not vary significantly with depth across any of the land use types. The AN: AP ratio in the 10-20 cm soil layer of grassland was significantly higher than that in farmland and forestland, while the C:P and N:P ratios in the 20-30 cm soil layer of farmland were significantly lower compared to forestland and grassland. Farmland soils exhibited greater nitrogen limitation, evidenced by lower AN contents and reduced N:P. Redundancy analysis indicated that SOC, TN, BD, Ps, MAT, and Ea were among the common influencing factors for the 0~30 cm soil nutrient stoichiometric ratios in farmland (16.2%-41.7%), forestland (17.3% -33.9%), and grassland (11.0% -26.9%). Interestingly, the influence of environmental factors on the soil nutrient stoichiometric ratios under different land use types decreased with increasing soil depth. 【Conclusion】 Overall, this research enhances our understanding of the key factors influencing soil fertility under different land use types and offers valuable guidance for optimizing nutrient management in the alpine region of Xizang Autonomous Region.