绿色发展背景下的中国氮肥需求
作者:
中图分类号:

S143.1;S-01

基金项目:

国家重点研发计划项目(2023YFD2300404)、国家自然科学基金项目(42277234)、湖北省重点研发计划项目(2023BBB147)和海南特色作物科学施肥技术体系创建及应用项目(RH2300006505)资助


Nitrogen Fertilizer Demand in China in the Context of Green Development
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    氮肥是粮食安全的重要保障,但过量施用会导致活性氮排放,造成严重的生态环境问题。在全面推动绿色发展的新时期,明确我国氮肥合理需求与化学氮肥减量路径对农业转型升级具有重要意义。本文综合分析了我国31种主要作物的产量潜力和氮素需求,并结合不同作物在优化管理下的氮素合理盈余水平,确定了我国在满足粮食安全和生态可持续发展要求下的氮肥合理需求。绿色发展背景下我国氮素养分合理需求总量为3 100万t,在不改变氮素投入结构的情况下,化学氮肥合理需求量为1 904万t,占总需求的61%。未来我国氮肥合理化应用调整路径应考虑氮肥定额、提高有机养分投入及替代比例、增加豆科作物种植比例提高生物固氮潜力,以及优化氮肥产品结构等方面。在此路径下,化学氮肥减量潜力为26%~53%。如在合理的氮素投入情况下(氮肥定额),通过提高有机养分替代比例到适宜水平40%,可将化学氮肥需求量下调至1 428万t N,减量潜力为44%。在此基础上,进一步提高豆科作物种植面积(增加大豆-玉米轮作比例),化学氮肥合理需求量可下调至1 360万t N,减量潜力为47%。最后,进一步通过优化氮肥产品结构,我国化学氮肥合理需求可进一步降低至1 213万t N,减量潜力达53%。本文对氮肥合理需求的评估和氮肥绿色发展路径的探索将有助于实施更科学的管理体系,并为我国氮肥产业升级提供科学支持。

    Abstract:

    Nitrogen fertilizer is essential for food security, but its excessive application leads to reactive nitrogen emissions, causing severe environmental issues. In the new era of promoting green development, clarifying China's reasonable nitrogen fertilizer demand and pathways for reducing chemical nitrogen fertilizer is crucial for agricultural transformation and upgrading. This study comprehensively analyzes the yield potential and nitrogen demand of 31 major crops in China and determines the reasonable nitrogen fertilizer demand under the conditions of food security and ecological sustainability by combining the nitrogen surplus levels under optimized management for different crops. Under the green development framework, the total reasonable nitrogen nutrient demand in China is 31 million tons, with a reasonable chemical nitrogen fertilizer demand of 19.04 million tons, accounting for 61% of the total demand. Future pathways for rational nitrogen fertilizer application in China should consider nitrogen fertilizer quota, increasing organic nutrient input and substitution ratio, increasing the planting proportion of leguminous crops to enhance biological nitrogen fixation potential, and optimizing nitrogen fertilizer product structure. Under these pathways, the potential for reducing chemical nitrogen fertilizer ranges from 26% to 53%. Specifically, under reasonable nitrogen input conditions (nitrogen quota), increasing the organic nutrient substitution ratio to 40% could lower the chemical nitrogen fertilizer demand to 14.28 million tons, with a reduction potential of 44%. Further increasing the planting area of leguminous crops (enhancing soybean-maize rotation ratio) could reduce the chemical nitrogen fertilizer demand to 13.6 million tons, with a reduction potential of 47%. Finally, optimizing the nitrogen fertilizer product structure could further reduce the reasonable chemical nitrogen fertilizer demand to 12.13 million tons, with a reduction potential of 53%. This study's evaluation of reasonable nitrogen fertilizer demand and exploration of green development pathways for nitrogen fertilizer will aid in implementing more scientific management systems and provide scientific support for the upgrading of China's nitrogen fertilizer industry.

    参考文献
    [1] Zhang W F,Ma L,Huang G Q,et al. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country[J]. Scientia Agricultura Sinica,2013,46(15):3161-3171. [张卫峰,马林,黄高强,等. 中国氮肥发展、贡献和挑战[J]. 中国农业科学,2013,46(15):3161-3171.]
    [2] Shah S M,Liu G Y,Yang Q,et al. Emergy-based valuation of agriculture ecosystem services and dis- services[J]. Journal of Cleaner Production,2019,239:118019.
    [3] Ghasemi-Mobtaker H,Kaab A,Rafiee S. Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran[J]. Energy,2020,193:116768.
    [4] Wang C,Li X L,Gong T T,et al. Life cycle assessment of wheat-maize rotation system emphasizing high crop yield and high resource use efficiency in Quzhou County[J]. Journal of Cleaner Production,2014,68:56-63.
    [5] Zhang X,Zhang Y,Shi P,et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment,2021,770:144674.
    [6] Gu W Y,Ma G S,Wang R,et al. Climate adaptation through crop migration requires a nexus perspective for environmental sustainability in the North China Plain[J]. Nature Food,2024,5:569-580.
    [7] Bindraban P S,Dimkpa C O,White J C,et al. Safeguarding human and planetary health demands a fertilizer sector transformation[J]. Plants,People,Planet,2020,2(4):302-309.
    [8] Liu J G,You L Z,Amini M,et al. A high-resolution assessment on global nitrogen flows in cropland[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(17):8035-8040.
    [9] You L C,Ros G H,Chen Y L,et al. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient,crop and soil management practices[J]. Nature Communications,2023,14:5747.
    [10] Wang Y C,Lu Y L. Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China[J]. Journal of Cleaner Production,2020,264:121635.
    [11] Ministry of Agriculture and Rural Affairs of the People's Republic of China. Circular of the Ministry of Agriculture on the issuance of the action plan for zero growth in fertilizer Use by 2020[EB/OL]. [2024-05-13]. https://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920859.htm. [中华人民共和国农业农村部. 农业部关于印发《到2020年化肥使用量零增长行动方案》的通知[EB/OL]. [2024-05-13]. http://www. zzys.moa.gov.cn/gzdt/201503/t20150318_6309945.htm.]
    [12] Ministry of Industry and Information Technology of the People's Republic of China. Ministry of Industry and Information Technology on promoting the transformation and development of the fertilizer industry's guiding opinions[EB/OL]. [2024-05-13]. https://wap.miit.gov.cn/ xwdt/gxdt/ldhd/art/2020/art_c686f3eb293841a5bfccd8bc1315b711.html. [中华人民共和国工业和信息化部. 工业和信息化部关于推进化肥行业转型发展的指导意见[EB/OL]. [2024-05-13]. https://wap.miit.gov.cn/xwdt/ gxdt/ldhd/art/2020/art_c686f3eb293841a5bfccd8bc1315b711.html.]
    [13] Ministry of Agriculture and Rural Affairs of the People's Republic of China. Ministry of Agriculture on the issuance of "carry out fruit,vegetable and tea organic fertilizer action plan for substituting chemical fertilizers[EB/OL]. [2024-05-13]. https://www.moa.gov. cn/nybgb/2017/derq/201712/t20171227_6130977.htm. [中华人民共和国农业农村部. 农业部关于印发《开展果菜茶有机肥替代化肥行动方案》的通知[EB/OL]. [2024-05-13]. https://www.moa.gov.cn/nybgb/2017/derq/ 201712/t20171227_6130977.htm.]
    [14] Ministry of Agriculture and Rural Affairs of the People's Republic of China. Circular of the Ministry of Agriculture on the issuance of the action program on resource utilization of livestock and poultry manure(2017-2020)[EB/OL]. [2024-05-13]. http://www. moa.gov.cn/nybgb/2017/dbq/201801/t20180103_6134011. htm. [中华人民共和国农业农村部. 农业部关于印发《畜禽粪污资源化利用行动方案(2017-2020年)》的通知[EB/OL]. [2024-05-13]. http:// www.moa.gov. cn/nybgb/2017/dbq/201801/t20180103_6134011.htm. ]
    [15] Xu P,Li G,Zheng Y,et al. Fertilizer management for global ammonia emission reduction[J]. Nature,2024,626(8000):792-798.
    [16] Zhang Q S. Nitrogen,phosphorus and potassium nutrient balance and optimization approaches of major crops in China[D]. Beijing:China Agricultural University,2021. [张青松. 中国主要作物氮磷钾养分平衡与优化途径[D]. 北京:中国农业大学,2021.]
    [17] Zhejiang Provincial Department of Agriculture and Rural Affairs. Opinions on trial agricultural input fertilizer quota system[EB/OL]. [2024-05-13]. https://nynct.zj. gov.cn/art/2019/8/7/art_1229142036_685297.html. [浙江省农业农村厅. 关于试行农业投入化肥定额制的意见[EB/OL]. [2024-05-13]. https://nynct.zj.gov.cn/art/2019/ 8/7/art_1229142036_685297.html.]
    [18] Jiangsu Market Supervision and Administration Bureau. The quota of chemical fertilizer application in key watershed farmland[EB/OL]. [2024-05-13]. https:// nynct.jiangsu.gov.cn/art/2022/4/8/art_13245_10409428.html. [江苏省市场监督管理局. 重点流域农田化肥用量定额[EB/OL]. [2024-05-13]. https://nynct.jiangsu. gov.cn/art/2022/4/8/art_13245_10409428.html.]
    [19] Lü F L,Hou M M,Zhang H T,et al. Closing the nitrogen use efficiency gap and reducing the environmental impact of wheat-maize cropping on smallholder farms in the Guanzhong Plain,Northwest China[J]. Journal of Integrative Agriculture,2019,18(1):169-178.
    [20] Monteny G J. The EU Nitrates Directive:A European approach to combat water pollution from agriculture[J]. The Scientific World Journal,2001,1(Suppl 2):927-935.
    [21] Gao C,Zhang T. Environmental management options practiced in Europe to mitigate agricultural nutrient pollution of ground and surface water[J]. Rural Eco-Environment,1999,15(2):50-53.
    [22] He P,Jin J Y,Pampolino M F,et al. Approach and decision support system based on crop yield responseand agronomic efficiency[J]. Plant Nutrition and Fertilizer Science,2012,18(2):499-505. [何萍,金继运,Pampolino M F,等. 基于作物产量反应和农学效率的推荐施肥方法[J]. 植物营养与肥料学报,2012,18(2):499-505.]
    [23] Ju X T. Improvement and validation of theoretical N rate(TNR)-Discussing the methods for N fertilizer recommendation[J]. Acta Pedologica Sinica,2015,52(2):249-261. [巨晓棠. 理论施氮量的改进及验证--兼论确定作物氮肥推荐量的方法[J]. 土壤学报,2015,52(2):249-261.]
    [24] Ramamoorthy B,Narasimham R L,Dinesh R S. Fertilizer application for specific yield target of sonara-64 wheat[J]. Indian Farming,1967,16(4):46-49.
    [25] Zhang B F,Xiao Y L,Zhang C,et al. Establishment of nitrogen surplus indicators in the main vegetable and orchard systems in Hainan[J]. Journal of Tropical Biology,2024,15(4):391-399. [张博飞,肖玉林,张翀,等. 海南典型蔬菜和果树氮素盈余指标的建立[J]. 热带生物学报,2024,15(4):391-399.]
    [26] Li W F,Yi J J,Ju X T,et al. Study on nitrogen application quota for major crops and regional nitrogen capacity of farmland in Hainan Island[J]. Journal of Plant Nutrition and Fertilizers,2024,DOI:10.11674/zwyf. 2024202. [李伟芳,易俊杰,巨晓棠,等. 海南岛主要作物氮肥定额及区域农田氮素承载力研究[J]. 植物营养与肥料学报,2024,DOI:10.11674/zwyf.2024202.]
    [27] Yi X Y,Yu L R,Chang S H E,et al. The effects of China’s Organic-Substitute-Chemical-Fertilizer(OSCF)policy on greenhouse vegetable farmers[J]. Journal of Cleaner Production,2021,297:126677.
    [28] Shang Z Y,Abdalla M,Xia L L,et al. Can cropland management practices lower net greenhouse emissions without compromising yield?[J]. Global Change Biology,2021,27(19):4657-4670.
    [29] Ren F L,Sun N,Misselbrook T,et al. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops:A meta-analysis[J]. Science of the Total Environment,2022,850:158064.
    [30] Chen B H,Ren C C,Wang C,et al. Driving forces of nitrogen use efficiency in Chinese croplands on county scale[J]. Environmental Pollution,2023,316(2):120610.
    [31] Shen W Z,He J,Li S S,et al. Opportunity and shift of nitrogen use in China[J]. Geography and Sustainability,2024,5(1):33-40.
    [32] Hu W B,Wang X M,Xu Y F,et al. Biological nitrogen fixation and the role of soil diazotroph niche breadth in representative terrestrial ecosystems[J]. Soil Biology and Biochemistry,2024,189:109261.
    [33] Herridge D F,Peoples M B,Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil,2008,311(1):1-18.
    [34] Gu B J,Zhang X M,Lam S K,et al. Cost-effective mitigation of nitrogen pollution from global croplands[J]. Nature,2023,613(7942):77-84.
    [35] Yan Z J,Chu J C,Nie J W,et al. Legume-based crop diversification with optimal nitrogen fertilization benefits subsequent wheat yield and soil quality[J]. Agricultural,Ecosystems and Environment,2024,374:109171.
    [36] Xie Z B,Zhang Y H,Wang H. Advances and perspectives in paddy biological nitrogen fixation[J]. Acta Pedologica Sinica,2020,57(3):540-546. [谢祖彬,张燕辉,王慧. 稻田生物固氮研究进展及方向[J]. 土壤学报,2020,57(3):540-546.]
    [37] Ladha J K,Tirol-Padre A,Reddy C K,et al. Global nitrogen budgets in cereals:A 50-year assessment for maize,rice,and wheat production systems[J]. Scientific Reports,2016,6:19355.
    [38] Shahzad A N,Qureshi M K,Wakeel A,et al. Crop production in Pakistan and low nitrogen use efficiencies[J]. Nature Sustainability,2019,2:1106-1114.
    [39] Guan D W,Li L,Yue X L,et al. Study on potential of biological nitrogen fixation of soybean in China[J]. Journal of Plant Nutrition and Fertilizers,2014,20(6):1497-1504. [关大伟,李力,岳现录,等. 我国大豆的生物固氮潜力研究[J]. 植物营养与肥料学报,2014,20(6):1497-1504.]
    [40] Collino D J,Salvagiotti F,Perticari A,et al. Biological nitrogen fixation in soybean in Argentina:Relationships with crop,soil,and meteorological factors[J]. Plant and Soil,2015,392(1):239-252.
    [41] Di Ciocco C,Penón E,Coviella C,et al. Nitrogen fixation by soybean in the pampas:Relationship between yield and soil nitrogen balance[J]. Agrochimica,2011,55(6):305-313.
    [42] Li D J,Liu R,Chen L,et al. Proposed innovation reform model for the mineral nitrogen fertilizer industry in China to reduce greenhouse gas emissions[J]. Frontiers of Agricultural Science and Engineering,2023,10(2):234-247.
    [43] Zhang F S,Huang C D,Shen J B,et al. Green intelligent fertilizer:New insight into making full use of mineral nutrient resources and industrial approach[J]. Acta Pedologica Sinica,2023,60(5):1203-1212. [张福锁,黄成东,申建波,等. 绿色智能肥料:矿产资源养分全量利用的创新思路与产业化途径[J]. 土壤学报,2023,60(5):1203-1212.]
    [44] Li T Y,Zhang W F,Yin J,et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global Change Biology,2018,24(2):e511-e521.
    [45] Chen Z D. Thinking about the work of fertilizer reduction and efficiency improvement in Zhejiang Province[J]. Shanghai Agricultural Science and Technology,2024(2):36-38. [陈正道. 关于浙江省化肥减量增效工作的思考[J]. 上海农业科技,2024(2):36-38.]
    [46] Liu S B,Wang J Y,Pu S Y,et al. Impact of manure on soil biochemical properties:A global synthesis[J]. Science of the Total Environment,2020,745:141003.
    [47] Wang J,Shan Y J,Lu R H,et al. Practice and exploration of chemical fertilizer reduction and efficiency improvement in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences,2022,63(12):2755-2758. [汪洁,单英杰,陆若辉,等. 浙江省化肥减量增效的实践与探索[J]. 浙江农业科学,2022,63(12):2755-2758.]
    [48] Ding W C,Xu X P,He P,et al. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China:A meta-analysis[J]. Field Crops Research,2018,227:11-18.
    [49] Yang X L,Xiong J R,Du T S,et al. Diversifying crop rotation increases food production,reduces net greenhouse gas emissions and improves soil health[J]. Nature Communications,2024,15(1):198.
    [50] Xie W,Zhu A F,Ali T,et al. Crop switching can enhance environmental sustainability and farmer incomes in China[J]. Nature,2023,616(7956):300-305.
    [51] Bowles T M,Mooshammer M,Socolar Y,et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America[J]. One Earth,2020,2(3):284-293.
    [52] Zhao J,Chen J,Beillouin D,et al. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers[J]. Nature Communications,2022,13:4926.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李婷玉,姚澜,钟于秀,王怡,李伟芳,徐洋,李冬佳,刘蕊,李贝,张卫峰.绿色发展背景下的中国氮肥需求[J].土壤学报,2025,62(2):308-321. DOI:10.11766/trxb202405280211 LI Tingyu, YAO Lan, ZHONG Yuxiu, WANG Yi, LI Weifang, XU Yang, LI Dongjia, LIU Rui, LI Bei, ZHANG Weifeng. Nitrogen Fertilizer Demand in China in the Context of Green Development[J]. Acta Pedologica Sinica,2025,62(2):308-321.

复制
分享
文章指标
  • 点击次数:352
  • 下载次数: 451
  • HTML阅读次数: 451
  • 引用次数: 0
历史
  • 收稿日期:2024-05-28
  • 最后修改日期:2024-07-22
  • 在线发布日期: 2025-01-23
文章二维码