不同管理措施对太湖流域稻田生产力和磷平衡的影响
作者单位:

1.江苏师范大学;2.黑龙江省黑土保护利用研究院;3.南京农业大学

基金项目:

江苏省卓越博士后计划(2022ZB533);黑龙江省博士后资助项目(LBH-Z23266)


Effects of Different Management Measures on Paddy Productivity and Phosphorus Balance in the Taihu Lake Lake Basin
Author:
Affiliation:

1.Jiangsu Normal University;2.Heilongjiang Academy of Agricultural Sciences;3.Nanjing Agricultural University

Fund Project:

The Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB533); The Heilongjiang Postdoctoral Fund (No. 2022ZB533)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探究不同管理措施对稻田生产力和磷平衡的影响,选取太湖流域典型水稻区作为研究对象,探讨不同磷肥施用量(P2O5 0、45、90 kg·hm-2)和灌溉方式(淹水、轻度落干、重度落干)对水稻产量、吸磷量、土壤磷损失及磷平衡的影响。两年田间试验结果表明:与不施磷相比,施磷处理可提高产量,增产幅度为2.20%~11.5%。与P2O5 45 kg·hm-2处理相比,P2O5 90 kg·hm-2处理降低了磷肥农学效率和磷肥利用率,分别平均降低34.9%和29.4%。与不施磷处理相比,施磷处理显著增加了土壤有效磷(Olsen-P)和活性磷组分(Resin-P、NaHCO3-Pi和NaOH-Pi之和)含量,分别增加19.1%~62.4%和36.5%~101%。此外,施磷处理显著增加了稻田土壤磷流失,增加幅度为79.1%~292%。而相较于淹水,轻度落干和重度落干处理可显著降低稻田磷损失,分别平均降低27.0%和35.6%,尤其是径流量,分别降低31.5%和41.3%。P2O5 90 kg·hm-2处理可维持稻季磷平衡,而由于土壤磷的高有效性及Olsen-P高于20 mg·kg-1时,施用P2O5 45 kg·hm-2即可满足水稻需求。结构方程模型分析揭示了Olsen-P和NaOH-Pi是水稻产量的主要影响因子,而Resin-P是磷损失的主要影响因子。因此,推荐采用轻度落干灌溉方式,并根据作物需磷量和土壤磷含量来确定合适的施磷量,及当土壤Olsen-P高于20 mg·kg-1时,P2O5 45 kg·hm-2施磷量即可满足水稻需求,以此实现作物产量最大化和磷素流失最小化。研究结果为太湖流域稻田养分管理和面源污染防控提供了科学依据。

    Abstract:

    【Objective】This study aimed to evaluate the impact of various phosphorus (P) fertilizer application rates and irrigation methods on rice yield, P uptake, P loss, and P balance in the Taihu Lake Basin. The goal was to optimize nutrient management and mitigate non-point source pollution by assessing the effects of different P levels and water management practices on rice paddies. 【Method】The research applied a two-year field experiment with three P application rates (P2O5 0, 45, and 90 kg·hm-2) and three irrigation strategies: continuous flooding, mild dryness, and severe dryness. Soil and rice samples were collected at harvest. Soil P fractions were analyzed using sequential extraction, and rice yield and P uptake were measured from grain and straw. Runoff and leachate samples were obtained to assess P loss. 【Result】Compared to the control treatment (no phosphate fertilizer), applying P fertilizer increased rice yield by 2.20% to 11.5%. The P2O5 90 kg·hm-2 treatment reduced P agronomic and P use efficiencies by an average of 34.9% and 29.4%, respectively, compared to the application of P2O5 45 kg·hm-2. P application significantly increased the soil Olsen-P and available P fractions (the sum of Resin-P, NaHCO3-Pi, and NaOH-Pi) by 19.1%~62.4% and 36.5%~101%, respectively, while also enhancing P loss from paddy fields by 79.1% to 292%, compared to the control. In addition, the mild and severe dryness strategies significantly reduced P loss, with average decreases of 27.0% and 35.6%, respectively, particularly in runoff, where reductions were 31.5% and 41.3%, compared to flooding. The P2O5 90 kg·hm-2 treatment maintained a P balance for the rice season, while the application of P2O5 45 kg·hm-2 was sufficient to meet rice demands due to the high availability of soil P and Olsen-P higher than 20 mg·kg-1. Structural equation modeling indicated that Olsen-P and NaOH-Pi were the main influencing factors for rice yield, while Resin-P was the main influencing factor of P loss. 【Conclusion】Moderate P fertilization at P2O5 45 kg·hm-2 effectively increased rice yield with minimal P loss. Mild dryness irrigation and appropriate P application based on crop P requirements and soil P levels are vital for maximizing crop yields while minimizing P loss. The findings provide a scientific basis for nutrient management in paddy fields and the control of non-point source pollution in the Taihu Lake Basin.

    参考文献
    相似文献
    引证文献
引用本文

陈光蕾,岳珂,袁佳慧,朱毅勇,开雷.不同管理措施对太湖流域稻田生产力和磷平衡的影响[J].土壤学报,,[待发表]
Chen Guanglei, Yue Ke, Yuan Jiahui, Zhu Yiyong, Kai Lei. Effects of Different Management Measures on Paddy Productivity and Phosphorus Balance in the Taihu Lake Lake Basin[J]. Acta Pedologica Sinica,,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-03
  • 最后修改日期:2025-02-08
  • 录用日期:2025-03-10
文章二维码