全球尺度上微生物残体碳与土壤团聚体稳定性的关系
作者:
作者单位:

中科院南京土壤研究所

基金项目:

国家自然科学基金项目


The Relationship Between Microbial Necromass Carbon and Soil Aggregate Stability on a Global Scale
Author:
Affiliation:

Institute of Soil Science, Chinese Academy of Sciences

Fund Project:

42425703

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    土壤有机碳库是陆地生态系统中最大的碳库,在缓解气候变化和维持土壤肥力方面发挥重要作用。微生物残体碳(MNC)占土壤有机碳的50%左右,对稳定土壤碳库至关重要。MNC在土壤中的积累转化与土壤团聚体的形成稳定密切相关,但目前尚未有研究全面系统地探讨两者之间的关系。本研究结合Meta分析和机器学习方法,深入探讨了MNC与土壤团聚体稳定性(以平均重量直径MWD为指标)之间的关系。研究结果表明,MWD是MNC的重要预测变量,且两者在全球范围内存在显著的正相关关系(P < 0.05)。基于全球预测数据的相关性分析进一步验证了这一关系,并发现其在不同生态系统中普遍存在。偏最小二乘路径模型(PLS-PM)分析结果揭示,土壤团聚体通过形成物理屏障直接保护MNC,同时也通过调节土壤物理性质和养分状况间接影响MNC的积累与转化。尤其在土壤养分方面,土壤养分对MNC的正向影响最为显著(路径系数 = 0.67,P < 0.05)。此外, MWD影响MNC的具体过程在不同生态系统中存在显著差异,具体表现在路径的方向和强度有所不同,如通过土壤物理性质和养分的间接作用在农田生态系统中较为显著,而在森林生态系统中直接作用较强。这些发现有助于深化对微生物残体碳积累转化过程与土壤团聚体形成稳定过程之间相互作用的理解,并为将团聚体稳定性作为MNC预测模型的潜在指标提供了理论支持。

    Abstract:

    【Objective】 The soil organic carbon (SOC) pool is the largest carbon reservoir in terrestrial ecosystems, playing an essential role in mitigating climate change and maintaining soil fertility. Among the various components of SOC, microbial necromass carbon (MNC) constitutes a significant proportion, contributing approximately 30-80% to the total SOC, and playing a crucial role in stabilizing soil carbon stocks. Accumulation and stabilization of MNC in soil are closely linked to the formation and stability of soil aggregates, which provide physical protection against microbial decomposition. Despite the known connection between MNC and soil aggregation, no comprehensive studies have systematically explored the relationship between MNC and soil aggregate stability. This study aims to further explore the global association between MNC and soil aggregate stability.【Method】 To assess the relationship between MNC and soil aggregate stability, we compiled global observational datasets on soil amino sugars (biomarkers of MNC) and soil aggregates. Using machine learning techniques, we predicted the global distribution of MNC and analyzed its correlation with the stability of soil aggregates. The PLS-PM was employed to further investigate the pathways through which soil aggregate stability influences MNC sequestration, takin into account factors such as soil physical properties, nutrient availability. 【Result】 The results revealed that MWD is a key predictor of MNC, with a significant positive correlation between MNC and MWD on a global scale (P < 0.05). Further correlation analysis of global prediction data confirmed this relationship and showed that it is consistent across different ecosystems. The Partial Least Squares Path Model (PLS-PM) analysis revealed that soil aggregates protect MNC directly by forming physical barriers and indirectly by regulating soil physical properties and nutrient availability, which in turn influence MNC accumulation and stabilization. In particular, soil nutrients had the most significant positive impact on MNC (path coefficient = 0.67, P < 0.05). The process through which MWD influences MNC shows significant differences across different ecosystems, specifically in terms of the direction and strength of the pathways. For example, in agricultural ecosystems, the indirect effects through soil physical properties and nutrients are more pronounced, while in forest ecosystems, the direct effect is stronger. 【Conclusion】The findings of this study underscore the significant role of soil aggregates in stabilizing MNC, and highlight the potential of soil aggregation as a key factor in enhancing soil carbon storage. Also, the positive correlation between MNC and aggregate stability suggests that strategies aimed at improving soil structure; eg., practices that enhance aggregation and optimize nutrient management, can effectively contribute to greater carbon sequestration. By fostering more stable soil aggregates, we can improve MNC sequestration, mitigate climate change, and sustain soil fertility. Furthermore, these findings can inform the development of predictive models for MNC sequestration and the integration of soil aggregate stability as a critical indicator for assessing the carbon sequestration potential of soils.

    参考文献
    相似文献
    引证文献
引用本文

匡艳云,胡汗,李森,梁玉婷.全球尺度上微生物残体碳与土壤团聚体稳定性的关系[J].土壤学报,,[待发表]
Kuang Yanyun, Hu Han, Li Sen, Liang Yuting. The Relationship Between Microbial Necromass Carbon and Soil Aggregate Stability on a Global Scale[J]. Acta Pedologica Sinica,,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2025-02-10
  • 录用日期:2025-03-06
文章二维码