基于直接校正算法与分数阶微分定量反演矿区土壤Pb和Zn含量
CSTR:
作者:
作者单位:

1.昆明理工大学;2.云南省高校高原山区空间信息测绘技术应用工程研究中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62266026)、云南省教育厅科学研究基金项目(2025J0079)和昆明理工大学分析测试基金项目(2024M20232201156)资助


Quantitative Inversion of Pb and Zn Content in Mining Area Soils Based on Direct Standardization Algorithm and Fractional Order Derivative
Author:
Affiliation:

1.Kunming University of Science and Technology;2.Application Engineering Research Center of Spatial Information Surveying and Mapping Technology in Plateau and Mountainous Areas Set by Universities in Yunnan Province

Fund Project:

Supported by the National Natural Science Foundation of China (No. 62266026), the Scientific Research Foundation of the Education Department of Yunnan Province (No. 2025J0079), and the Analysis and Testing Foundation of Kunming University of Science and Technology (No. 2024M20232201156)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱技术为土壤重金属含量的快速、精准监测提供了全新的解决方案。然而,利用实验室光谱建立的模型在实际应用中泛化能力较弱;此外,直接使用遥感影像光谱数据反演土壤重金属含量时,受成像时天气状况以及地面环境等因素的影响导致模型精度较低,难以准确反映研究区重金属含量的分布情况。本研究以云南省会泽县矿山镇某尾矿区为研究对象,获取56个表层土壤样本的高光谱反射率(地面和影像)以及Pb、Zn的含量。首先,采用直接校正(DS)算法结合实验室光谱数据对高分5号影像数据进行光谱校正;随后,使用Box-Cox转换对Pb和Zn含量进行正态化处理;接着,通过分数阶微分(FOD)对校正后的光谱进行变换,并利用Boruta算法筛选特征波段;最后,构建随机森林和XGBoost反演模型。研究结果表明,DS算法可有效消除土壤粒径和含水量等干扰因素对影像光谱的影响;Box-Cox转换解决了Pb和Zn含量的偏态分布问题;FOD有效增强了细节光谱特征,Boruta算法选出的特征波段显著提升了反演精度;此外,XGBoost模型在处理复杂特征交互和非线性关系的回归问题时,展现出更高的预测精度;在该研究区Pb含量的最佳反演模型为0.8 Order-Boruta-XGBoost,Zn含量的最佳反演模型为1.6 Order-Boruta-XGBoost,两个最佳反演模型具有较好的鲁棒性。本研究为利用高光谱技术反演矿区土壤中Pb和Zn含量提供了可靠的参考方法。

    Abstract:

    【Objective】Hyperspectral technology provides a novel solution for the rapid and accurate monitoring of heavy metal content in soils. However, models developed using laboratory spectra often have limited generalizability in practical applications. Additionally, directly estimating soil heavy metal concentrations from remote sensing imagery is often hampered by factors such as weather conditions and surface environment at the time of image acquisition, which leads to reduced model accuracy and limits the ability to accurately reflect the spatial distribution of heavy metals in the study area.【Method】In this study, a tailings area in Kuanshan Town, Huize County, Yunnan Province, was selected as the research site. A total of 56 surface soil samples were collected, and both ground-based and image-based hyperspectral reflectance, as well as Pb and Zn concentrations, were obtained. First, the Direct Standardization (DS) algorithm, combined with laboratory spectra, was used to correct the GF-5 imagery. Subsequently, the Box-Cox transformation was applied to normalize the skewed distributions of Pb and Zn concentrations. Then, fractional order derivative (FOD) was performed on the corrected spectra, and the Boruta algorithm was used to identify informative spectral bands. Finally, Random Forest and XGBoost models were developed for the inversion of heavy metal concentrations.【Result】The results indicate that the DS algorithm effectively mitigated the influence of soil particle size and moisture content on image spectra. The Box-Cox transformation resolved the skewness distribution problem of Pb and Zn content. FOD effectively enhanced detailed spectral features, and the optimal feature band combinations selected by the Boruta algorithm significantly improved the inversion accuracy. Furthermore, the XGBoost demonstrated superior predictive performance in handling complex feature interactions and nonlinear regression problems. 【Conclusion】The optimal inversion model for Pb content in the tailings area was a 0.8 Order-Boruta-XGBoost model, while for Zn content it was the 1.6 Order-Boruta-XGBoost model. Both models exhibited good robustness. This study provides a reliable reference method for using hyperspectral technology to invert Pb and Zn content in mining area soils.

    参考文献
    相似文献
    引证文献
引用本文

杞应涛,甘 淑,袁希平,胡 琳,胡建开,卢成卓.基于直接校正算法与分数阶微分定量反演矿区土壤Pb和Zn含量[J].土壤学报,2026,63(1). DOI:10.11766/trxb202411180444 QI Yingtao, GAN Shu, YUAN Xiping, HU Lin, HU Jiankai, LU Chengzhuo. Quantitative Inversion of Pb and Zn Content in Mining Area Soils Based on Direct Standardization Algorithm and Fractional Order Derivative[J]. Acta Pedologica Sinica,2026,63(1).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-18
  • 最后修改日期:2025-09-01
  • 录用日期:2025-09-05
  • 在线发布日期: 2025-09-17
  • 出版日期:
文章二维码