大气CO2浓度升高影响稻田土壤固氮潜势的微生物机理
CSTR:
作者:
作者单位:

南京信息工程大学气象灾害预报预警与评估协同创新中心/生态与应用气象学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42205174, 42375114, 42071023)


Microbial Mechanisms Underlying the Effects of Elevated Atmospheric CO2 Concentrations on Nitrogen Fixation Potential in Paddy Soils
Author:
Affiliation:

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,School of Ecology Applied Meteorology,Nanjing University of Information Science Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    生物固氮可将惰性氮气转化为植物可利用态氮,是维持土壤氮素循环和支撑农业生态系统生产力的核心环节。本研究旨在阐明大气CO2浓度升高影响稻田土壤生物固氮过程的微生物驱动机制,为气候变化背景下稻田氮循环优化和农业可持续氮管理提供科学依据。利用基于开顶式气室的CO2浓度自动调控平台,设置CK(环境CO2浓度)和EC(环境CO2浓度升高200 μmol·mol?1)2个处理,通过微宇宙培养、实时荧光定量PCR、高通量测序等技术分析稻田土壤理化性质、固氮潜势(NFP)、固氮菌(nifH基因)的丰度及群落组成等指标,探讨大气CO2浓度升高影响稻田生物固氮的微生物驱动机制。结果表明,就全生育期而言,与CK相比,EC处理使稻田土壤微生物生物量氮(MBN)含量显著升高3.3%,使土壤NH4+?N含量显著下降11.6%。同时,EC处理使稻田土壤的NFP和nifH基因丰度均显著增加。在水稻成熟期,EC处理的nifH基因群落结构较CK处理发生了显著变化。此外,稻田土壤TN含量与土壤NFP呈显著正相关,而土壤NFP由土壤MBN含量、土壤有机碳含量和nifH基因丰度综合调控。综上,大气CO2浓度升高通过增加土壤MBN含量和固氮菌的数量,从而使NFP增强并增加稻田土壤氮含量。

    Abstract:

    【Objective】?Biological nitrogen fixation?, which converts inert nitrogen into plant-available nitrogen, is a critical process for maintaining the soil nitrogen cycle and supporting the productivity of agroecosystems. However, the effect of atmospheric CO2 on biological nitrogen fixation in paddy fields remains poorly understood. Thus, this study aims to elucidate the microbial-driven mechanism of biological nitrogen fixation in paddy soils affected by elevated atmospheric CO2. The findings of this study will provide a scientific basis for the optimization of nitrogen cycling in paddy fields and sustainable nitrogen management in agriculture under climate change scenarios.【Method】In this study, we investigated the microbial-driven mechanism of biological nitrogen fixation in paddy fields by elevated atmospheric CO2 concentration. Two treatments, CK (ambient CO2 concentration) and EC (elevated ambient CO2 concentration by 200 μmol·mol?1) were set up by using an open-top chamber (OTC)-based platform for the automated control of CO2 concentration. Soil physicochemical properties, nitrogen fixation potential (NFP), and the abundance and community composition of nitrogen-fixing bacteria (nifH gene) of paddy soils were analyzed by microcosmic cultivation, real-time quantitative PCR, and high-throughput sequencing.【Result】The results showed that across the whole rice plant growth period and compared with CK, EC treatment significantly increased the microbial biomass nitrogen (MBN) content by 3.3% and significantly decreased the NH4+?N content by 11.6%. Also, the NFP and nifH gene abundance were significantly increased by EC treatment. At the maturity stage, the community structure of the nifH gene in the EC treatment changed significantly compared with CK. In addition, the TN content was positively correlated with NFP, which was regulated by soil MBN content, SOC content, and nifH gene abundance.【Conclusion】This study reveals that elevated atmospheric CO2 concentration increased soil MBN content and nifH gene abundance, enhanced NFP, and increased the nitrogen content of paddy soils.

    参考文献
    相似文献
    引证文献
引用本文

吴彦霖,黄薇,胡正华.大气CO2浓度升高影响稻田土壤固氮潜势的微生物机理[J].土壤学报,DOI:10.11766/trxb202412250509,[待发表]
WU Yanlin, HUANG Wei, HU Zhenghua. Microbial Mechanisms Underlying the Effects of Elevated Atmospheric CO2 Concentrations on Nitrogen Fixation Potential in Paddy Soils[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202412250509,[In Press]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-25
  • 最后修改日期:2025-06-12
  • 录用日期:2025-07-08
  • 在线发布日期: 2025-07-18
  • 出版日期:
文章二维码