改良措施对苏打盐化草甸土团聚体稳定性及腐殖质组成的影响
DOI:
CSTR:
作者:
作者单位:

黑龙江八一农垦大学 农学院,黑龙江 大庆

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD2300102)、黑龙江省自然科学基金联合引导项目(LH2022D019)和黑龙江省博士后科研启动金资助项目(LBH-Q21162)共同资助


Effects of Improvement Measures on Aggregate Stability and Humus Composition of Soda Saline Meadow Soil
Author:
Affiliation:

College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang

Fund Project:

Supported by the Natural Science Foundation Project of Heilongjiang Provincial (No. LH2022D019), the National Key R&D Program of China (No. 2023YFD2300102), and the Postdoctoral Scientific Research Startup Fund Project of Heilongjiang Provincial (No. LBH-Q21162)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究不同改良措施对苏打盐碱地土壤结构及腐殖质特性的调控机制。采用大田对比试验,设置常规(CK)、生物炭(T1)、有机肥(T2)和复合改良剂(T3)处理,研究其对苏打盐化草甸土团聚体稳定性及腐殖质组成及大豆产量的影响。结果表明,与CK相比,T1、T2和T3处理均显著促进微团聚体向大团聚体的转化。T3处理效果最为显著,>2 mm粒径团聚体质量分数增加12.66%(P<0.05),显著高于T1和T2。T3处理通过降低土壤pH 3.02%并同步提高有效磷(67.84%)、碱解氮(7.98%)含量,显著改善养分有效性;其土壤平均重量直径和几何平均直径值分别提高7.99%和2.39%,同时使微团聚体(0.053~0.25 mm)有机碳含量提升24.58%~31.14%,显著高于其他处理。在腐殖质组分上,T3处理各粒径胡敏酸、富里酸和胡敏素含量增幅分别为19.95%~29.62%、3.64%~6.48%和7.33%~36.92%,均优于T1和T2处理;T3处理显著提升腐殖质复杂程度,E4/E6比值显著增加84.84%。PLS-PM结构方程模型揭示土壤有机碳(路径系数0.96)通过调控腐殖酸总量(1.13)和胡敏素(1.29)显著影响团聚体稳定性。产量分析表明T3处理通过增加株高(61.32%)和单株荚数(11.96%)实现大豆产量2653.97 kg·hm-2,增产42.67%。研究表明复合改良剂(T3)通过重构腐殖质分子结构,使大粒级团聚体分子结构复杂化,促进胶结物质增加,提高有机碳含量,显著提高了>2 mm粒径团聚体质量分数和土壤团聚体稳定性,有效改善了苏打盐化草甸土耕层土壤结构,为苏打盐碱地改良与产能协同提升提供理论依据。

    Abstract:

    【Objective】This study was aimed to investigate the regulation mechanisms of different improvement measures on soil structure and humus characteristics of soda saline-alkali land.【Method】A field comparative experiment was conducted to study the effects of conventional (CK), biochar (T1), organic fertilizer (T2), and structural modifier (T3) on aggregate stability, humus composition, and soybean yield in soda saline meadow soil.【Result】The results showed that compared with CK, T1, T2 and T3 treatments significantly promoted the transformation of microaggregates to macroaggregates. The effect of T3 treatment was the most significant, and the mass fraction of >2 mm aggregates increased by 12.66% (P<0.05), which was significantly higher than that of T1 and T2. T3 treatment significantly improved nutrient availability by reducing soil pH by 3.02% and simultaneously increasing available phosphorus (67.84%) and alkali-hydrolyzable nitrogen (7.98%) content. The average weight diameter and geometric mean diameter of soil increased by 7.99% and 2.39%, respectively, and the organic carbon content of microaggregates (0.053-0.25 mm) increased by 24.58%-31.14%, which was significantly higher than other treatments. In terms of humus components, the contents of humic acid, fulvic acid, and humin in each particle size of T3 treatment increased by 19.95%-29.62%, 3.64%-6.48%, and 7.33%-36.92%, respectively, which were better than those of T1 and T2 treatments. T3 treatment significantly increased the complexity of humus, and the ratio of E4/E6 significantly increased by 84.84%. The PLS-PM structural equation model revealed that soil organic carbon (path coefficient 0.96) significantly affected aggregate stability by regulating total humic acid (1.13) and humin (1.29). Yield analysis showed that T3 treatment achieved a soybean yield of 2653.97 kg·hm-2 by increasing plant height (61.32%) and pod number per plant (11.96%), with an increase of 42.67%.【Conclusion】The results showed that the compound modifier (T3) complicated the molecular structure of large-grained aggregates by reconstructing the molecular structure of humus, promoted the increase of cementing materials, increased the content of organic carbon, significantly increased the mass fraction of aggregates with >2 mm particle size and the stability of soil aggregates, and effectively improved the soil structure of the plough layer of soda-saline meadow soil. This provides a theoretical basis for the improvement of soda saline-alkali land and the synergistic improvement of production capacity.

    参考文献
    相似文献
    引证文献
引用本文

李思岩,梁晓艳,王辰,王雨晴,谢威,杨迪,张明聪.改良措施对苏打盐化草甸土团聚体稳定性及腐殖质组成的影响[J].土壤学报,,[待发表]
lisiyan, liangxiaoyan, wangchen, wangyuqing, xiewei, yangdi, zhangmingcong. Effects of Improvement Measures on Aggregate Stability and Humus Composition of Soda Saline Meadow Soil[J]. Acta Pedologica Sinica,,[In Press]

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-06
  • 最后修改日期:2025-05-05
  • 录用日期:2025-06-03
  • 在线发布日期:
  • 出版日期:
文章二维码