H+与表面氧原子的极化诱导共价作用促进黏土矿物溶解
CSTR:
作者:
作者单位:

1.界面过程与土壤健康重庆市重点实验室,西南大学资源环境学院;2.环境材料与修复技术重庆市重点实验室,重庆文理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42077014);国家重点研发计划项目(2023YFD1900300);重庆市自然科学基金项目(2024NSCQ-LZX0152)


Polarization‐Induced Covalent Bonding between H+ and Surface O Atoms Promotes Clay Mineral Dissolution
Author:
Affiliation:

1.Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University;2.Chongqing key laboratory of environmental materials & remediation technologies, Chongqing University of Arts and Science

Fund Project:

; The National Natural Science Foundation of China (42077014);The National Key R&D Program of China (2023YFD1900300); The Natural Science Foundation Project of Chongqing Science and Technology Bureau (2024NSCQ-LZX0152)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    黏土矿物溶解反应是自然土壤酸化和矿物风化的重要过程之一。但黏土矿物溶解反应的表面反应机制仍不清晰。矿物表面电荷产生的强电场使矿物表面氧(O)原子与氢离子(H+)之间会产生新的共价性相互作用,即极化诱导共价作用(PICB)。本研究以蒙脱石(MMT)、伊利石(ILI)和高岭石(KLI)为研究对象,通过矿物溶解分析和水热实验,探究PICB促进黏土矿物溶解的界面反应机制。研究结果表明,矿物中元素溶出密度随pH降低而增加,矿物溶解初期阶段较好地符合脱盐基化、脱硅化、富铁铝化三个化学风化阶段。PICB增强了H+吸附能密度(γH(0)),且|γH(0)|随pH降低而增大,表明低pH条件下H+与矿物表面相互作用更强。理论分析与实验结果均表明,H+-矿物极化诱导共价作用和矿物元素溶出密度的临界pH为3.0。当pH < 3.0时,PICB明显增强,导致Si-O键能明显减弱,硅酸盐矿物的溶解大幅提高。尽管不同矿物的元素溶出密度随pH的变化表现出较大差异,但是元素溶出密度与γH(0)的关系均服从同一规律,表明γH(0)对黏土矿物结构具有重要影响。随着γH(0)的增强,MMT水热反应产物中SiO2含量增加,以Al2O3为代表的其余产物随之减少。H+-矿物极化诱导共价作用增强了H+-矿物表面O原子的γH(0)而减弱矿物Si-O键能,从而促进矿物结构解体。本研究定量阐述了H+与矿物相互作用对矿物化学风化的影响,为提出矿物结构稳定性的定向调控技术提供理论指导。

    Abstract:

    【Objective】Dissolution reactions of clay minerals are one of the essential processes contributing to natural soil acidification and mineral weathering. However, the surface reaction mechanism of mineral dissolution remains unclear. 【Method】The strong electric field generated by the surface charges of minerals induces a new type of covalent bonding between the oxygen (O) atoms on the mineral surface and the hydrogen (H+) ions, a phenomenon known as polarization-induced covalent bonding (PICB). In this study, we selected montmorillonite (MMT), illite (ILI), and kaolinite (KLI) to explore the interfacial reaction mechanisms promoting the dissolution of clay minerals by PICB using mineral dissolution analysis and hydrothermal experiments. 【Result】The dissolution density of mineral elements increases with decreasing pH, and the initial stage of mineral dissolution aligns with three processes of chemical weathering: desalination, desilicification, and ferrallitization. The PICB significantly enhanced the H+ adsorption energy density (γH(0)), and the absolute value of γH(0) increased with the decrease of pH, indicating an interaction between H+ and the mineral. Also, the surface was stronger under low pH conditions, and a consistent critical pH of 3.0 was observed based on both the theoretical analyses of γH(0) and the dissolution density of mineral elements as a function of pH. At a pH < 3.0, the PICB was significantly enhanced, resulting in a notably weakened Si-O bonding energy and a substantial increase in the dissolution efficiency of silicate minerals. Although the dissolution behaviors of various minerals exhibited significant variations in response to pH, they can be described as a function of γH(0), indicating that γH(0) has an important influence on the structure of clay minerals. Moreover, the enhancement of γH(0) resulted in a higher content of SiO2 in the hydrothermal reaction products of MMT, accompanied by a subsequent reduction in the residual products represented by Al2O3. 【Conclusion】This study quantified the impact of H+-mineral bonding on the chemical weathering of minerals and revealed that the PICB between H+ and surface O atoms of minerals enhanced the γH(0) of H+ on the mineral surface and weakened the Si-O bond energy, thus significantly affecting the dissolution reactions of clay minerals. The results of this study provide theoretical insights for proposing targeted modulation techniques aimed at enhancing the structural stability of minerals.

    参考文献
    相似文献
    引证文献
引用本文

唐雨婷,肖爽,丁武泉,李航,刘新敏. H+与表面氧原子的极化诱导共价作用促进黏土矿物溶解[J].土壤学报,DOI:10.11766/trxb202501090018,[待发表]
TANG Yuting, XIAO Shuang, DING Wuquan, LI Hang, LIU Xinmin. Polarization‐Induced Covalent Bonding between H+ and Surface O Atoms Promotes Clay Mineral Dissolution[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202501090018,[In Press]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-09
  • 最后修改日期:2025-05-12
  • 录用日期:2025-07-02
  • 在线发布日期: 2025-07-14
  • 出版日期:
文章二维码