基于无人机成像光谱数据和机器学习算法的土壤盐分反演与制图研究
CSTR:
作者:
作者单位:

1.南京信息工程大学;2.浙江地质研究院国土空间生态修复系;3.江苏省不动产登记中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Soil Salinity Inversion and Mapping Based on UAV Imaging Spectroscopy Data and Machine Learning Algorithms
Author:
Affiliation:

1.NUIST;2.Department of Territorial Space Ecological Restoration, Zhejiang Institute of Geosciences;3.Nanjing University of Information Science and Technology;4.Jiangsu Real Estate Registration Center

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤盐渍化严重制约农业可持续发展,精准监测土壤盐分对农业管理和生态保护至关重要。本研究利用无人机成像光谱技术结合机器学习算法,探索滨海地区土壤盐分含量(SSC)的反演与空间制图方法。通过竞争自适应重加权采样(CARS)算法筛选特征波段并计算光谱指数,采用递归特征消除法(RFE)筛选光谱指数,利用偏最小二乘回归(PLSR)、支持向量回归(SVR)、随机森林回归(RFR)构建6种不同光谱变换的全波段预测模型和利用SVR、RFR、极端梯度提升(XGBoost)和反向传播神经网络(BPNN)构建光谱指数预测模型,并通过精度评估选择最佳模型进行SSC空间制图。研究结果表明:研究区实测SSC范围为1.23~8.96g·kg-1,均值为3.12g·kg-1;全波段模型中,经SG平滑处理的原始光谱的RFR模型精度最高;光谱指数模型中,基于特征选择的XGBoost模型表现最优;反演结果揭示了研究区土壤盐分中低含量广泛分布、高值零散分布的空间特征,XGBoost适合全面预测整体分布,而经SG平滑处理的原始光谱的RFR更适合低盐分情况的分布。本研究创新性地结合了全波段优化光谱指数与传统光谱指数来构建SSC预测模型,为无人机成像光谱技术在田间尺度SSC快速监测提供了范例。

    Abstract:

    【Objective】Soil salinization seriously restricts the sustainable development of agriculture, and the accurate monitoring of soil salinity is crucial for agricultural management and ecological protection. This study combined unmanned aerial vehicle (UAV) imaging spectroscopy with machine learning algorithms to explore the inversion and spatial mapping of soil salt content (SSC) in coastal areas.【Method】Feature bands were selected using the Competitive Adaptive Reweighted Sampling (CARS) algorithm, and spectral indices were calculated. Spectral indices were selected using the Recursive Feature Elimination (RFE) method. Utilizing PLSR, SVR, and RFR, this study developed prediction models for all spectral bands based on six different spectral transformations, and spectral index prediction models were built using SVR, RFR, XGBoost, and BPNN. The best model was chosen for SSC spatial mapping through accuracy evaluation.【Result】The results showed that the measured soil salt content (SSC) in the study area ranged from 1.23 to 8.96 g kg?1, with a mean of 3.12 g kg?1. Among the full-spectrum models, the random forest regression (RFR) model based on raw spectra processed with Savitzky-Golay (SG) smoothing demonstrated the highest accuracy. For the spectral index models, the extreme gradient boosting (XGBoost) model with feature selection performed the best. The inversion results revealed that low-to-moderate soil salinity was widely distributed across the study area, with high salinity values scattered sporadically. While XGBoost was well-suited for predicting the overall spatial distribution of soil salinity, the RFR model based on SG-smoothed raw spectra was more effective for mapping areas with low salinity.【Conclusion】This study innovatively combined full-spectrum optimized spectral indices with traditional ones to build a SSC prediction model, offering a new technical path for rapid SSC monitoring in coastal regions using UAV imaging spectroscopy.

    参考文献
    相似文献
    引证文献
引用本文

史泽峰,徐明星,赵成义,焦彩霞,陈 桐,曾 荣,卢 婧,郑光辉.基于无人机成像光谱数据和机器学习算法的土壤盐分反演与制图研究[J].土壤学报,DOI:10.11766/trxb202502140060,[待发表]
shizefeng, xumingxing, zhaochengyi, jiaocaixia, chentong, cengrong, LU Jing, ZHENG Guanghui. Research on Soil Salinity Inversion and Mapping Based on UAV Imaging Spectroscopy Data and Machine Learning Algorithms[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202502140060,[In Press]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-14
  • 最后修改日期:2025-08-08
  • 录用日期:2025-12-29
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码