光谱技术测定土壤不同形态铁含量的精度与经济性分析
CSTR:
作者:
作者单位:

1.南京信息工程大学地理科学学院;2.贵州省烟草科学研究院;3.中国烟草总公司贵州省公司;4.土壤与农业可持续发展重点实验室中国科学院南京土壤研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

中国烟草总公司贵州省公司项目(2023XM11)、中国烟草总公司项目 (110202102038)、国家自然科学基金项目(42107322)


Precision and Economic Analysis of Determining Different Forms of Soil Iron Contents Using Spectroscopic Techniques
Author:
Affiliation:

1.School of Geographical Science,Nanjing University of Information Science Technology;2.Guizhou Academy of Tobacco Science;3.China National Tobacco Corporation Guizhou Provincial Company;4.State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences

Fund Project:

The National Tobacco Corporation Project(No.2023XM11),the Key Research and Development Project of China National Tobacco Corporation (No.110202102038),and the National Natural Science Foundation of China (No. 42107322)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铁(Fe)是植物生长必需的微量营养元素,不同形态铁(全铁Total Fe、有效铁Available Fe、游离铁Free Fe)的精准监测对土壤健康管理和农业生产优化至关重要,全铁和游离铁也是某些土壤类型鉴定的必需指标。与传统土壤测定方法相比,光谱技术具有快速、经济、环保的优势,近年来逐渐成为土壤Fe测定的替代方案。但光谱技术在系统反演不同形态铁方面报道甚少,为此,本研究基于贵州省501个典型农田耕作层(0~20 cm)土壤样品的颜色参数(CP)、可见-近红外光谱(VNIR)、中红外光谱(MIR)及融合光谱(SF)数据,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态变量变换(SNV)方法进行基线校正,分别应用偏最小二乘回归(PLSR)和支持向量机(SVM)两种方法进行建模,系统比较了单一光谱与融合光谱对三种形态铁的预测性能,通过成本效率比(CER)和效率指数(EI)两个指标量化不同预测策略精度与成本的关系。结果表明:(1)单一光谱模型中,VNIR光谱在全铁预测中表现最优(决定系数R2=0.85,相对分析偏差RPD=2.59,均方根误差RMSE=5.48 g·kg-1),MIR光谱在游离铁预测中精度最高(R2=0.80,RPD=2.23,RMSE=4.15 g·kg-1);决策级融合(SF3)光谱进一步提高了3种形态铁的预测精度,其中有效铁提升幅度最大,但仍难做到有效预测(RPD=1.37),因此不推荐使用光谱技术对土壤有效铁进行预测。(2)成本-精度分析显示,光谱技术可显著降低成本(降幅达40%~85%),其中VNIR和MIR技术在全铁和游离铁预测中兼具高精度和高经济性,适用于需综合考虑精度与成本的场景,而融合光谱(SF)精度提升有限且成本增加较多,适合精度要求更高场景。该研究表明光谱技术能在保证一定预测精度的基础上显著降低土壤铁含量测定成本,可替代传统方法实现全铁与游离铁的高效监测,从而为精准农业实施提供有效的技术支持。

    Abstract:

    【Objective】Iron (Fe) is an essential micronutrient for plant growth. Accurate monitoring of different forms of iron (Total Fe, Available Fe, Free Fe) is essential for soil health management and agricultural production optimization. Total iron and free iron are also necessary indicators to identify certain soil types. Compared with traditional soil determination methods, spectral technology is rapid, cost-effective, and environmentally friendly, and is gradually becoming an alternative for soil Fe determination in recent years. However, there are few reports on the systematic inversion of different forms of iron by spectral technology.【Method】Based on the color parameter (CP), visible near infrared (VNIR), mid infrared (MIR) , and fusion spectrum (SF) were used to obtain data of 501 typical farmland tillage layer (0~20cm) soil samples in Guizhou Province. The spectrum was smoothed by Savitzky-Golay (SG) denoising, and then the baseline was corrected by the standard normalization (SNV) method. Partial least squares regression (PLSR) and support vector machine (SVM) were used for modeling, respectively. The system compared the predictive performance of single spectra and fused spectra for the three types of iron fractions. Moreover, the relationship between accuracy and cost of different prediction strategies was quantified using two indicators: Cost-Efficiency Ratio (CER) and Efficiency Index (EI).【Result】The results show that: (1) in the single spectral model, VNIR spectrum performed best in the prediction of total iron (determination coefficient R2 = 0.85, relative analysis deviation RPD = 2.59, root mean square error RMSE = 5.48 g·kg-1), while MIR spectrum had the highest accuracy in the prediction of free iron (R2 = 0.80, RPD = 2.23, RMSE = 4.15 g·kg-1). Also, the decision level fusion (SF3) spectrum further improved the prediction accuracy of the three forms of iron, among which the effective iron increased the most, but it was still difficult to achieve effective prediction (RPD = 1.37). Thus, using spectral technology to predict soil available iron is not recommended. (2) The cost accuracy analysis showed that the spectral technology can significantly reduce the cost (by 40%~85%) of soil iron characterization. VNIR and MIR technologies had high accuracy and were cost-effective in the prediction of total iron and free iron, and were suitable for scenarios requiring comprehensive consideration of accuracy and cost. However, the accuracy improvement of fused spectrum (SF) was limited, and the cost increased more, which is suitable for scenarios requiring higher accuracy. 【Conclusion】This study shows that spectral technology can significantly reduce the cost of soil iron content measurement on the basis of ensuring a certain prediction accuracy, and can replace the traditional methods to achieve efficient monitoring of total iron and free iron, so as to provide effective technical support for the implementation of precision agriculture.

    参考文献
    相似文献
    引证文献
引用本文

唐 运,高维常,潘文杰,蔡 凯,曾韵涛,杨 静,姜超英,郑光辉,李德成,曾 荣.光谱技术测定土壤不同形态铁含量的精度与经济性分析[J].土壤学报,DOI:10.11766/trxb202503280144,[待发表]
TANG Yun, GAO Weichang, PAN Wenjie, CAI Kai, ZENG Yuntao, YANG Jing, JIANG Chaoying, ZHENG Gaunghui, LI Decheng, ZENG Rong. Precision and Economic Analysis of Determining Different Forms of Soil Iron Contents Using Spectroscopic Techniques[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202503280144,[In Press]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-28
  • 最后修改日期:2025-09-26
  • 录用日期:2025-10-27
  • 在线发布日期: 2025-11-25
  • 出版日期:
文章二维码