微氧生境的改变阻控水稻吸收镉-菲的机制
CSTR:
作者:
作者单位:

1.湘潭大学环境与资源学院;2.湖南省农业环境生态研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(22176161)资助


The Mechanism of Micro-aerobic Habitat Alteration in Controlling Rice Cadmium and Phenanthrene Uptake
Author:
Affiliation:

College of Environment and Resources, Xiangtan University

Fund Project:

Supported by the National Natural Science Foundation of China (No.22176161)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水稻根际独特的微氧生境是影响污染物迁移转化的关键区域。然而,通过调控根际微氧环境以阻控镉(Cd)和菲的化学与微生物协同机制尚不明确。为此,本研究以中稻黄华占为对象,通过盆栽试验中插入塑料滴管的方式提升根际溶解氧含量,探究其对水稻吸收Cd和菲的阻控机制。结果表明,根际氧含量增加(最大提高1.7倍)显著降低了水稻糙米中Cd(24.2%~61.1%)和菲(26.1%~50.6%)的累积。首先,微氧环境的改善促进了水稻根表无定形态铁氧化物(铁膜)的形成(最大增加1.5倍),进而强化了对Cd和菲的吸附固定,构建了阻控污染物吸收的根系屏障。此外,好氧环境重塑了根际微生物群落结构,形成了以Sphingomonas sp.(鞘氨醇单胞菌属)和Mycobacterium sp.(分枝杆菌属)等为核心的功能菌群,其中Cd抗性和多环芳烃降解基因丰度提升了2.2倍~5.6倍,强化了微生物对Cd的生物固定和对菲的生物降解。冗余分析进一步证实,溶解氧是驱动微生物群落演替并影响污染物形态的关键环境因子。综上,本研究证实改善微氧环境能促进根系铁膜和根际功能菌群的形成,协同阻控水稻对Cd和菲的吸收,为污染农田的安全利用提供了新的理论依据和技术途径。

    Abstract:

    【Objective】The unique micro-oxygen environment of the rice rhizosphere constitutes a critical hotspot that governs the transport and transformation of pollutants. However, the chemical-microbial mechanisms for absorbing cadmium(Cd) and phenanthrene uptake by manipulation of the rhizosphere micro-oxygen environment are still unclear. 【Method】This study conducted a pot experiment using the mid-season rice cultivar ""Huanghuazhan"". The dissolved oxygen content in the rhizosphere was elevated by inserting plastic droppers to investigate the mechanisms by which this modulated micro-oxygen environment inhibits the uptake of Cd and phenanthrene in rice. 【Result】The results indicated that the increased rhizospheric oxygen content (up to 1.7-fold) led to reductions in the accumulation of Cd (24.2%–61.1%) and phenanthrene (26.1%–50.6%) in rice. First, the increased oxygen content in the rice rhizosphere promoted the formation of Amorphous Ferric Iron Phosphate (AFIP-Fe) on the root surface (up to a 1.5-fold increase). This enhancement thereby strengthened the adsorption and sequestration of Cd and phenanthrene, constructing a root barrier that effectively impeded pollutant uptake. Secondly, the aerobic environment reshaped the rhizospheric microbial community structure, forming a functional microbiota dominated by core functional flora such as Sphingomonas sp. and Mycobacterium sp. Consequently, the abundance of genes related to Cd resistance and polycyclic aromatic hydrocarbon (PAH) degradation increased by 2.2 to 5.6-fold, which enhanced the microbial-mediated bio-immobilization of Cd and the biodegradation of phenanthrene. Redundancy analysis (RDA) showed that dissolved oxygen was the key environmental factor driving microbial community succession and influencing the forms of pollutants. 【Conclusion】In conclusion, this study confirms that improving the micro-oxygen environment promotes the formation of root iron plaque and functional rhizosphere microbiota, which synergistically acted to inhibit the uptake of Cd and phenanthrene in rice. These findings provide a novel theoretical basis and a potential technical approach for the safe utilization of contaminated farmland.

    参考文献
    相似文献
    引证文献
引用本文

张祺明,武 晨,易盛炜,陈名杰,彭冠维,吴汨川,谢运河,吴玉俊,李 峰†.微氧生境的改变阻控水稻吸收镉-菲的机制[J].土壤学报,2026,63(1). DOI:10.11766/trxb202506220298 ZHANG Qiming, WU Chen, YI Shengwei, CHEN Mingjie, PENG Guanwei, WU Michuan, XIE Yunhe, WU Yujun, LI Feng. The Mechanism of Micro-aerobic Habitat Alteration in Controlling Rice Cadmium and Phenanthrene Uptake[J]. Acta Pedologica Sinica,2026,63(1).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-22
  • 最后修改日期:2025-10-05
  • 录用日期:2025-10-09
  • 在线发布日期: 2025-10-11
  • 出版日期:
文章二维码