低氮胁迫下水稻根系的发生及生长素的响应
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31071846和31172022)、江苏省研究生科研创新计划项目(CXLX13_280)和SRT项目 (1313A04)资助


Formation of rice root regulated by nitrogen deficiency
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用水培实验,研究了5个氮(N)浓度下(0.01~5 mmol L-1)水稻的生物量、体内氮浓度、根系发育、体内生长素浓度以及生长素外流蛋白OsPIN家族基因的表达情况。结果表明,与正常供氮水平(2.5 mmol L-1)相比,低氮(0.01 mmol L-1)胁迫下水稻根冠比增加28%,地上部全氮浓度降低约20%,根系全氮浓度降低约33%,种子根长度增加25%,种子根上的侧根密度降低26%,倒一叶中的生长素含量增加140%,而根茎结合处和根系的生长素浓度分别下降22%和60%;RT-PCR的结果表明,低氮(0.01 mmol L-1)胁迫下水稻根系中OsPIN1a-bOsPIN2OsPIN5a-bOsPIN9基因表达显著下调;而外源生长素α-萘乙酸NAA()和生长素极性运输抑制剂1-萘氨甲酰苯甲酸(NPA)()的施加均能影响到水稻种子根长和种子根上的侧根密度。由此推论,低氮胁迫下水稻体内生长素从倒一叶到根系极性运输减少是水稻根系对低氮胁迫响应的生理机制之一。

    Abstract:

    The ability of plants to sense available nutrients in the soil and to respond accordingly is of fundamental importance for their adaptation to the environment. The plasticity of root in development in response to nitrogen (N) deficiency is vital, as N is a major nutrient essential for plant growth and development. Changes in root morphology under the stress of N deficiency are complex and vary with experimental conditions and plant species. Little attention has been paid to root growth under the stress of N deficiency, possibly because of the inconsistent response of primary root in length to N deprivation depending on plant age and N concentration supplied. Thus root morphology in rice under the stress of N deficiency has not yet been characterized in detail. Root formation is regulated by both environmental conditions and intrinsic factors. Auxins play a key role in rice plants establishing and developing root morphology. Few studies have evaluated the role of auxins in regulating root growth under low N conditions. To what extent, if any, auxin transport in rice roots is regulated by N deficiency remains unclear. In this paper, a hydroponic media experiment was carried out on N concentration regulating auxin transport and relationship between root formation and transport and distribution of auxins in rice. In this study, biomass, N concentration, seminal root length and lateral root density (LR density) of rice plants and auxin concentration in the plant and relative expression of OsPIN family genes of auxin outflowing protein were investigated relative to N concentration (0.01, 0.2, 1, 2.5 and 5 mmol L-1) in hydroponic media. Comparison of the plants under two N concentrations (0.01 and 2.5 mmol L-1) reveals that the ratio of root to shoot increased significantly with decreasing N concentration, partly resulting from decline of the plant root in biomass relative to shoot. However, compared with the plants under normal N concentration (2.5 mmol L-1), the plants under low N concentration (0.01 mmol L-1) were 33% lower in root N concentration, 25% longer in length of seminal root and 26% lower in lateral roots density. Besides, the latter were 140% higher in auxin concentration in the 1st leaf from the top but 22% and 60% lower, respectively, in the root-shoot junction and the root, indicating that N deficiency probably resulted in inhibition of auxin polar transport from the shoot to root. RT-PCR analysis shows that the relative expression of OsPIN1a-bOsPIN2OsPIN5a-b and OsPIN9 markedly decreased in rice root of the plants under the stress of low N concentration as compared with their respective one in the plants under normal N concentration. Application of exogenous 1-Naphthaleneacetic acid ( NAA),to plants under the stress of low N concentration inhibited growth of their seminal root in length, but stimulated growth of their lateral roots on seminal root in density to form a root system structure similar to that of the plants under normal N concentration, while application of N-1-naphthylphthalamic acid (NPA), a kind of auxin transport inhibitor to plants under normal N concentration stimulated growth of their seminal in length, but inhibited growth of their lateral root density on seminal root to form a root system structure similar to that of the plants under the stress of low N concentration. It could, therefore, be concluded that the inhibition of polar transport of auxin from the first leaf next to the top down to root in the plant by N deficiency was one of the physiological mechanisms of the response of rice roots to the stress of N deficiency.

    参考文献
    相似文献
    引证文献
引用本文

孙虎威,王文亮,刘尚俊,侯蒙蒙,谢天宁,梁志浩,樊亚男,张亚丽.低氮胁迫下水稻根系的发生及生长素的响应[J].土壤学报,2014,51(5):1096-1102. DOI:10.11766/trxb201401290057 Sun Huwei, Wang Wenliang, Liu Shangjun, Hou Mengmeng, Xie Tianning, Liang Zhihao, Fan Yanan, Zhang Yali. Formation of rice root regulated by nitrogen deficiency[J]. Acta Pedologica Sinica,2014,51(5):1096-1102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-29
  • 最后修改日期:2014-05-11
  • 录用日期:2014-06-27
  • 在线发布日期: 2014-07-01
  • 出版日期: