引用本文:王凤花,张振国,贾 文.三氯生与镉单一及复合污染对土壤呼吸和酶活性的影响[J].土壤学报,2018,55(2):422-431.
WANG Fenghua,ZHANG Zhenguo,JIA Wen.Effects of Single-Factor and Combined Contamination of Triclosan and Cadmium on Respiration and Enzyme Activity of Soil[J].Acta Pedologica Sinica,2018,55(2):422-431
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 485次   下载 1140 本文二维码信息
码上扫一扫!
分享到: 微信 更多
三氯生与镉单一及复合污染对土壤呼吸和酶活性的影响
王凤花1, 张振国2, 贾 文1
1.山东农业大学资源与环境学院;2.大连民族大学经济管理学院
摘要:
为了解典型药品和个人护理品(PPCPs)——三氯生与镉复合污染的生态效应,采用室内培养实验和联合毒性预测模型,首次评价了三氯生与镉单一及复合污染对土壤呼吸及参与土壤碳氮循环的相关酶活性的生态毒性。结果表明:三氯生与镉单一及复合污染对土壤呼吸呈现激活—抑制—激活的生态效应;刺激了蛋白酶活性,激活率先降低后升高,56 d时达到最大。整个实验期间均抑制了蔗糖酶活性,镉(10.0 mg kg-1)单一污染培养14 d抑制率达到最大值(81%),三氯生单一胁迫呈现负的剂量效应关系,两者复合污染无显著的剂量效应关系。联合效应评价模型预测表明,相比三氯生或镉单一污染,两者的复合胁迫对土壤呼吸呈现随时间变化的拮抗—协同—加和效应,对土壤蛋白酶呈现协同—加和—协同的联合效应,而对土壤蔗糖酶活性则主要为协同效应。
关键词:  复合污染  土壤呼吸  土壤蛋白酶  土壤蔗糖酶  联合效应
DOI:10.11766/trxb201708040345
分类号:
基金项目:中国博士后基金面上项目(2016M602168)和国家级大学生创新创业训练计划项目(201410434049)资助
Effects of Single-Factor and Combined Contamination of Triclosan and Cadmium on Respiration and Enzyme Activity of Soil
WANG Fenghua1, ZHANG Zhenguo2, JIA Wen1
1.College of Resources and Environment, Shandong Agricultural University;2.School of Economics and Management, Dalian Minzu University
Abstract:
【Objective】 Although some studies have been reported on environmental risk assessment of single-factor contamination of triclosan (TCS), a typical pharmaceuticals and personal care products (PPCPs), little has on effects of combined contamination of TCS and cadmium on ecosystems. The aim of this study is to evaluate comprehensively environmental risks of combined contamination of TCS and cadmium in soil ecosystems.【Method】A laboratory incubation experiment was performed and a combined toxic effect prediction model was used to evaluate ecological toxicity of single-factor and/or combined pollution of triclosan and cadmium on soil microbial and enzyme activities involved in soil carbon and nitrogen cycling. The incubation experiment was designed to have four treatments for triclosan contamination, i.e. 0, 1.0, 10.0 and 50.0 mg kg-1 dry soil, two treatments for Cd contamination, i.e. 0 and 10.0 mg kg-1 dry soil, added in the form of CdCl2, three combined contamination treatments, i.e. 1.0/10.0, 10.0/10.0 and 50.0/10.0 mg kg-1 dry soil in triclosan/cadmium, and three controls containing neither cadmium nor triclosan. Each treatment had three replicates. The treated samples were incubated at 25℃ in dark. The soil respiration, protease and sucrose activities were measured on the 7th, 14th, 28th and 56th day of incubation. 【Result】Results show that both the single-factor and combined pollutions of triclosan and cadmium had soil respiration activated, inhibited and then activated again. In the soils under single-factor stress of either Cd or TCS, soil respiration was significantly activated on Day 7 with activation rate being 18.52 %, 25.26%, 27.98% and 18.45% for Cd 10.0 mg kg-1, triclosan 1.0, 10.0 and 50.0 mg kg-1, respectively, and began to be inhibited after 14 days of incubation, and activated again at the end of the incubation (Day 56), with activation rate being 24.16%, 41.84%, 31.56% and 21.41% for Cd 10.0 mg kg-1, triclosan 1.0, 10.0 and 50.0 mg kg-1, respectively, which were significantly different from that in the controls (p<0.05) . Furthermore, the degree of activation seemed to be related with the concentration of triclosan (p<0.05) spiked. In the soils under combined stress of Cd and TCS, regardless of ratio, soil respiration was stimulated on Day 7, with the effect declining with rising TCS concentration; inhibited on Day 14 and Day 28, with the effect declining too, with rising triclosan concentration, and stimulated significantly again at the end of the experiment (Day 56). The contamination of Cd and TCS, either single-factor or combined, stimulated protease activity with the effect declining first and then rising during the process of incubation and peaking on Day 56, with activation rate being 94.5%, 31.8%, 42.1% and 68.2% for Cd 10.0 mg kg-1, triclosan 1.0, 10.0 and 50.0 mg kg-1, respectively, in soils under single-factor stress of cadmium or triclosan, and being 98.0%, 110.3% and 102.7% for TCS/Cd 1.0/10.0, 10.0/10.0, and 50.0/10.0 mg kg-1, respectively, in soils under combined stress. However, the degree of stimulation of protease activity was not significantly positively related to the concentrations of triclosan (p>0.05) in the soil. The contamination of Cd and TCS, either single-factor or combined, inhibited invertase activity during the whole incubation period. The effect peaked up to 81% on Day 14 in soils under single-factor contamination of cadmium, and was negatively related to concentration of TCS in soils under single-factor stress of triclosan, and did not show any dose-effect relationship in soils under combined pollution of Cd and TCS. The joint effects evaluation model shows that compared to single-factor pollution of either triclosan or Cd, the two pollutants in the treatments under combined stress acted jointly on soil respiration, but not always the same way. Their relationship varied with the time, from antagonistic to synergetic and then additive. Their effects on soil protease varied from synergistic to additive and then to synergetic, while their effects on soil invertase activity were mainly synergistic. 【Conclusion】Throughout the entire experiment, the contamination of Cd and TCS, either single-factor or combined, firstly stimulated then inhibited and in the end stimulated again soil respiration, stimulated protease activity, and inhibited the invertase activity. The joint toxic effects of triclosan and cadmium varied with concentration and duration of the exposure. Therefore, it is suggested that in future studies, joint toxic effects of chemical pollutants in biosolids and soil should be taken into account in health risk assessment.
Key words:  Combined pollution  Soil respiration  Soil protease  Soil invertase  Joint effects