引用本文:程 谊,张金波,蔡祖聪.气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用[J].土壤学报,2019,56(3):507-515.
CHENG Yi,ZHANG Jinbo,CAI Zucong.Key Role of Matching of Crop-specific N Preference, Soil N Transformation and Climate Conditions in Soil N Nutrient Management[J].Acta Pedologica Sinica,2019,56(3):507-515
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 204次   下载 197 本文二维码信息
码上扫一扫!
分享到: 微信 更多
气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用
程 谊, 张金波, 蔡祖聪
南京师范大学地理科学学院,江苏省地理信息资源开发与利用协同创新中心
摘要:
采用合理的作物养分管理措施对粮食安全保障、土壤与农业可持续发展和生态环境保护至关重要。正确的养分管理策略应是针对某一特定气候-土壤-作物条件选择特定的肥料品种、用量、施用时间和施用位置。然而,当前的氮肥管理措施大多未考虑作物氮形态喜好特性、土壤氮素转化特点以及气候条件等因素的影响,以致在实际生产中效果欠佳。本文提出最大化满足作物氮形态喜好,氮肥形态、土壤氮素转化特点以及气候条件高度契合才能显著提高氮肥利用率,同时降低施氮量、减少活性氮向环境的扩散;气候-土壤-作物之间氮形态契合程度也是引进新的作物或者实施新的施肥措施的重要依据。本文为因地制宜地制定农业减氮增效措施指出了另一个方向。
关键词:  作物氮形态喜好  氮肥形态  气候条件  土壤氮素转化特点  氮肥管理  氮肥利用率
DOI:10.11766/trxb201812030523
分类号:
基金项目:国家自然科学基金项目(41830642, 41671231)和国家重点研发计划项目(2017YFD0200106,2017YFD0800103)资助
Key Role of Matching of Crop-specific N Preference, Soil N Transformation and Climate Conditions in Soil N Nutrient Management
CHENG Yi, ZHANG Jinbo, CAI Zucong
School of Geography Sciences, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
Abstract:
Appropriate crop nutrient management synchronizing soil nutrient supply with crop nutrient demand is critical for global food security, soil and agriculture sustainability, and ecological environmental protection. Rational nutrient stewardship should be embodied in application of climate-soil-crop-specific types of fertilizers, at the right rate, right time and right place. However, most of the current N nutrient management practices often fail to take into account the influences of N species preferences of crops, soil N transformation characteristics and climate conditions, thus affecting the effects of the soil N nutrient management practices. Meanwhile, any mismatching of these factors would increase N losses through ammonia volatilization, denitrification, runoff and leaching. Nitrogen transformation is liable to get affected by climatic conditions and responds to plant N uptake characteristics in natural ecosystems. For instance, in subtropical acidic soils, NH4+-N dominated inorganic N pool is mainly a result of low nitrification and relative high nitrate immobilization, which reduces the risk of N loss via leaching or runoff. In contrast, in neutral and alkaline soils in arid and semiarid regions, NO3--N is the dominant inorganic N form, as a result of high nitrification and relative low nitrate immobilization and denitrification, which reduces the risk of N loss via ammonia volatilization under high pH condition. Some crops, such as rice, already adapted to low redox potential and tea, originating from acidic soils, prefer NH4+-N, and most crops growing in dryland, like wheat, tobacco and maize, and a variety of vegetables prefer NO3--N. Therefore, a closed N cycle with minimal N loss in ecosystem might be achieved through rationalizing N nutrient management, exhibiting that the N available in the soil matches the N of the plant’s preference in form. If the applied NH4+-based fertilizers are always maintained in the form of NH4+ in the soil, “preference” for NH4+ of NH4+ preferring crops can often be translated into higher 15N recovery by the crops. In contrast, if the N applied doesn’t match the crop's preference in form, availability of the applied N to the crop depends on ability of the soil to transform the applied N into the preferred N in form. Hence, soil N transformation regulating soil N forms plays an important role in optimizing matching degree N sources with plant’s species-specific N preferences. This paper points out that to satisfy crop N preference, it is essential to have N form in fertilizer, soil N transformation characteristics and climate conditions well coupled and only in this case, can N use efficiency be significantly improved, N application rate lower, and loss of active N via emission into the environment be reduced. Therefore, it could be concluded that (1) NH4+- preferring crops perform best in acidic soils, in low nitrification rate, in humid regions and applied with NH4+-based fertilizers as the sole N source; and (2) NO3--preferring crops perform best in neutral and alkaline soils, in high nitrification rate, in arid and semiarid regions, and applied with NO3--based fertilizer as the main N source. So, these relationships should be taken into account when new N fertilizer management strategies are developed and new species of crops are introduced (e.g. application of nitrification inhibitors to rice paddy fields (prefer NH4+) can increase N uptake and yield). It is expected that this study would provide a scientific basis for development of knowledge-based N fertilizer management practices for a certain crop, soil and climate system. To establish critical values to evaluate coupling degree of the N sources, soil N transformation characteristics, crop N preference and climate conditions, further studies should be conducted.
Key words:  Crop N preference  N fertilizer form  Climate conditions  Soil N transformation characteristics  N fertilizer management  N use efficiency