引用本文:张富林,吴茂前,夏 颖,翟丽梅,段小丽,范先鹏,熊桂云,刘冬碧,高 立.江汉平原稻田田面水氮磷变化特征研究[J].土壤学报,2019,56(5):1190-1200.
ZHANG Fulin,WU Maoqian,XIA Ying,ZHAI Limei,DUAN Xiaoli,FAN Xianpeng,XIONG Guiyun,LIU Dongbi,GAO Li.Changes in Nitrogen and Phosphorus in Surface Water of Paddy Field in Jianghan Plain[J].Acta Pedologica Sinica,2019,56(5):1190-1200
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 122次   下载 76 本文二维码信息
码上扫一扫!
分享到: 微信 更多
江汉平原稻田田面水氮磷变化特征研究
张富林1, 吴茂前1, 夏 颖1, 翟丽梅2, 段小丽1, 范先鹏1, 熊桂云1, 刘冬碧1, 高 立3
1.湖北省农业科学院植保土肥研究所,湖北省农业面源污染防治工程技术研究中心,农业农村部潜江农业环境与耕地保育科学观测实验站,农业农村部废弃物肥料化利用重点实验室,农业环境治理湖北省工程研究中心;2.中国农业科学院农业资源与农业区划研究所;3.浠水县农业环境保护站
摘要:
在江汉平原地区,因水肥管理粗放,特别是人为排放刚施肥泡田水,水稻种植引发的氮磷面源污染问题比较严重,迫切需要掌握稻田氮、磷动态特征,并据此进行科学的肥水管理。采用大田试验的方法,设置不同氮磷梯度,研究了江汉平原稻田田面水氮磷形态与浓度动态变化特征及施肥的影响。结果表明:施尿素后,田面水可溶性总氮(DTN)、可溶性有机氮(DON)和铵态氮(NH4+-N)占总氮(TN)的比例分别在88.0%、44.7%和31.6%以上,且随施氮量增加而增大;施磷肥后,田面水中颗粒态磷(PP)占总磷(TP )的比例为76%~93%,且随施磷量的增加而降低。田面水中氮素浓度与施氮量之间呈分段线性相关关系,当施氮量分别超过287.8、289.9、231.5和336.7 kg·hm-2后,TN、DTN、NH4+-N和DON的浓度会跃增;田面水中各形态磷素浓度均随施磷量的增加而线性增加。施氮肥后,田面水中TN和DTN浓度均在施肥后1 d达到峰值,在基肥和分蘖肥后5 d、穗肥后2 d降低至与不施氮肥基本接近;NH4+-N浓度在基肥和分蘖肥后2 d、穗肥后1d达到峰值,基肥和分蘖肥后5 d、穗肥后2 d后降低至与不施氮肥趋同。施磷肥后TP、PP和可溶性总磷(DTP)的浓度均在施肥后1 d达到峰值,3 d后急剧降低,降幅均在79.0%以上。可见,在江汉平原地区,施尿素后田面水中氮素以DTN为主,尤其是DON和NH4+-N,施磷肥后以PP为主。减少氮、磷肥用量可降低稻田氮、磷损失,且氮肥施用量应尽可能控制在231.5 kg·hm-2以内。施基肥和分蘖肥后5 d内、施穗肥后2 d内是江汉平原稻田氮素损失的关键控制期,施磷肥后3 d内是磷素流失的关键控制期。
关键词:  江汉平原  田面水  形态  动态变化  关键控制期
DOI:10.11766/trxb201811230529
分类号:
基金项目:国家重点研发计划项目(2016YFD0800500)、公益性行业(农业)科研专项(201003014)和农业部长江中游平原农业环境重点实验室开放基金项目共同资助
Changes in Nitrogen and Phosphorus in Surface Water of Paddy Field in Jianghan Plain
ZHANG Fulin1, WU Maoqian1, XIA Ying1, ZHAI Limei2, DUAN Xiaoli1, FAN Xianpeng1, XIONG Guiyun1, LIU Dongbi1, GAO Li3
1.Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences;2.Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences;3.Agricultural Environment Protection Station of Xishui County
Abstract:
【Objective】Because of extensive management of water and nutrients in rice cultivation, especially artificial drainage of just fertilized paddy fields for mechanized rice transplanting and direct rice seeding, non-point source N and P pollution turned out to be very serious in Jianghan Plain, posing a great threat to the safety of agricultural water and drinking water. N and P in paddy field surface water are the direct sources of non-point source N and P pollution. It is, therefore, essential to master rules of the changes in N and P in paddy field surface water to preventing and controlling the non-point source N and P pollution from paddy fields. However, at present, it is still unclear how N and P changes in paddy fields surface water and how fertilizer application affects the changes in the Jianghan Plain. This is a topic that calls for further studies. 【Method】In this study, a field experiment, designed to have a number of treatments varying in N and P application rate along a gradient, was carried out to explore how N and P changes in paddy field surface water and how fertilizer application affects the changes. Samples of paddy field surface water were collected for 8 consecutive days after each fertilizer application for analysis of total N (TN), total soluble N (DTN), soluble organic N (DON), NH4+-N and NO3--N, total P (TP), total soluble P (DTP), and particulate P (PP). 【Result】Results show that total soluble N (DTN), soluble organic N (DON) and NH4+-N accounted for 88.0%, 44.7% and 31.6%, respectively, of the total N (TN) in surface water, after application of urea, and increased with increasing N application rate, while particulate P (PP) made up 76%~93% of the total P (TP) after application of superphosphate, but decreased with increasing P application rate. A piecewise linear correlation was observed between N concentration in surface water and N application rate. With increasing N application rate, N in surface water would increase in concentrations, and when N application rate exceeded 287.8, 289.9, 231.5 and 336.7 kg·hm-2, TN, DTN, NH4+-N and DON would jump by a large margin, respectively. All forms of P in surface water would increase linearly in concentraton with increasing P application rate. TN and DTN peaked 1 day after urea application, and then leveled off 5 days after basal and tillering fertilization and 2 days after panicle fertilization. NH4+-N reached its peak value 2 days after basal and tillering fertilization and 1 day after panicle fertilization, and then leveled off 5 days after basal and tillering fertilization and 2 days after panicle fertilization. TP, PP and total soluble P (DTP) reached their respective peak values quickly just in 1 day, and then decreased sharply by over 79.0% 3 days after superphosphate application. 【Conclusion】DTN, especially DON and NH4+-N are the main forms of N in surface water after urea applicaton. PP is the main form of P after superphosphate application. Reducing the N and P application rates can reduce the concentrations of N and P in surface water and their losses as well. So it is advisable to control N application rate within 231.5 kg·hm-2. The first 5 days after basal and tillering fertilization and 2 days after panicle fertilization were the optimal periods key to controlling N loss from paddy fields, and 3 days to controlling P loss.
Key words:  Jianghan Plain  Surface water  Forms  Dynamic change  Key controlling period