基于VIS-NIR光谱的互花米草入侵湿地土壤有机碳预测研究
作者:
中图分类号:

S153.6

基金项目:

国家自然科学基金项目(41701236)、江苏省研究生科研与实践创新计划项目(KYCX18_2120)、江苏高校优势学科建设工程资助


VIS-NIR Spectroscopy-Based Prediction of Soil Organic Carbon in Coastal Wetland Invaded by Spartina alterniflora
Author:
Fund Project:

the Young Program?of?The National Natural Science Foundation of China (No. 41701236), Postgraduate Research & Practice Innovation Program of Jiangsu Province(No. KYCX18_2120), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究可见光—近红外光谱技术预测互花米草入侵背景下滨海湿地土壤有机碳含量的潜力,以江苏省典型互花米草湿地为研究对象,利用时空替代法采集15个土壤剖面3个深度共45个土壤样品。在实验室测定土壤光谱及有机碳含量,利用偏最小二乘回归方法建立了基于6种光谱变换的土壤有机碳预测模型,并分析了互花米草入侵年限和土层深度对土壤光谱和模型预测精度的影响。结果表明,表层土壤有机碳含量随互花米草入侵而显著增加。相对于仅包含光谱信息的预测模型,加入辅助变量(土层深度和植物入侵年限)建立的混合模型预测精度更高。交叉验证结果表明,基于光谱倒数1/R建立的混合模型预测精度最高,其决定系数(R2)为0.68,预测相对分析误差(RPD)为1.6,是预测互花米草入侵湿地土壤有机碳含量的最优模型。本研究表明,利用可见光—近红外光谱技术可以对互花米草入侵湿地的土壤有机碳含量进行有效预测,土层深度和植物入侵年限辅助变量可以在一定程度上提高模型预测精度。

    Abstract:

    [Objective] As one of the major species that have invaded into China, Spartina alterniflora(S. alterniflora) significantly affects the carbon storage and carbon cycle process in the coastal wetlands it has colonized. Close monitoring of spatiotemporal variation of soil organic carbon (SOC) in S. alterniflora invaded wetlands will facilitate scientific evaluation of impacts of this species on wetland ecosystems. The objective of this study is to investigate potential of the visible and near infrared reflectance spectroscopy in predicting soil organic carbon content in this kind of coastal wetlands. It is expected to provide certain important evidence of the impacts of the invasive S. alterniflora on wetlands.[Method] A soil survey was carried out in a tract of S. alterniflora invaded wetland typical of the coastal Jiangsu for acquisition of detailed soil——vegetation information with the space-for-time substitution method. In the surveyed area, 15 soil profiles were prepared randomly over the area for collection of soil samples, 3 each at different depths (0-30, 30-60, 60-100cm) in line with the stratified random sampling strategy, making up a total of 45 samples. The soil samples were analyzed in the lab for soil reflectance spectrum (R) and SOC content. With the aid of the partial least squares regression (PLSR) method, SOC prediction models were built up based on six forms of spectral transformation(R, R', R'', 1/R, (1/R)', (1/R)''), evaluated for performance by root mean square error(RMSE), coefficient of determination(R2) and residual predictive deviation(RPD), and analyzed for influence of auxiliary variables(like S. alterniflora invasion history and soil depth) on prediction accuracy.[Results] SOC content increased significantly in the surface soil after the invasion of S. alterniflora, and declined with depth. In the study area, mean SOC content was 7.37 g·kg-1 in the 0-30 cm soil layer, with variation coefficient being 18.13%, and fell down to 4.39 g·kg-1 in the 60-100 cm soil layer, with variation coefficient being 36.26%. Spectral curves of the soil samples appeared to be quite similar in shape, with three distinctive absorbance valleys, separately, at 1 400, 1900, and 2 200 nm. Relative to the models containing spectral information only, the hybrid models established by amendment of auxiliary variables were much higher in prediction accuracy. At the same time spatio-temporal variables could explain, to a certain extent, spatial heterogeneity of the spectral features of the soil. Cross validation shows that the PLSR models with spectra and their transformation forms as its single auto-variable was quite limited in prediction capacity, with R2 varying between 0.41 and 0.58 and RPD between 1.12 and 1.31 obtained with two validation methods. Once the PLSR models were established with auxiliary variables amended, their evaluation parameters ought to be improved to a varying extent.Among the tested models, the hybrid model based on spectrum transformation was the highest in prediction accuracy with R2 being 0.68 and an RPD being 1.6. A small sample size used in the study was probably one of the causes leading to relatively low prediction accuracy.[Conclusions] All the findings in this study demonstrate that the visible-near-infrared spectroscopy can be used to effectively predict soil organic carbon content in the coastal salt marsh colonized with S. alterniflora. The amendment of spatio-temporal auxiliary variables, like soil depth and plant invasion history, may improve the models in prediction accuracy to a certain extent, and the utilization of the spectral technology may help realize real-time monitoring of soil carbon dynamic in coastal wetlands invaded by S. alterniflora. Moreover, this study may be of certain reference value to using relevant auxiliary variables in guiding soil sampling for accurate prediction of soil properties.

    参考文献
    [1] Camacho-Valdez V,Ruiz-Luna A,Ghermandi A,et al. Valuation of ecosystem services provided by coastal wetlands in northwest Mexico[J]. Ocean & Coastal Management,2013,78(3):1-11.
    [2] Kirwan M L,Megonigal J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature,2013,504(7478):53-60.
    [3] Chung C H. Forty years of ecological engineering with Spartina plantations in China[J]. Ecological Engineering,2006,27(1):49-57.
    [4] Zuo P,Zhao S H,Liu C G,et al. Distribution of Spartina spp. along China's coast[J]. Ecological Engineering,2012,40:160-166.
    [5] Wang Q,An S Q,Ma Z J,et al. Invasive Spartina alterniflora:Biology,ecology and management[J]. Acta Phytotaxonomica Sinica,2006,44(5):559-588.[王卿,安树青,马志军,等. 入侵植物互花米草——生物学、生态学及管理[J]. 植物分类学报,2006,44(5):559-588.]
    [6] Liu Y X,Li M C,Zhang R S. Approach on the dynamic change and influence factors of Spartina alterniflora loisel salt-marsh along the coast of the Jiangsu Province[J]. Wetland Science,2004,2(2):116-121.[刘永学,李满春,张忍顺. 江苏沿海互花米草盐沼动态变化及影响因素研究[J]. 湿地科学,2004,2(2):116-121.]
    [7] Liu J E,Su H R,Xu J,et al. How does Spartina alterniflora affect the soil organic carbon pool of coastal wetlands in China[J]. Ecology and Environmental Sciences,2017,26(6):1085-1092.[刘金娥,苏海蓉,徐杰,等. 互花米草对中国海滨湿地土壤有机碳库的影响[J]. 生态环境学报,2017,26(6):1085-1092.]
    [8] Jin B S,Gao D Z,Yang P,et al. Change of soil organic carbon with different years of Spartina alterniflora invasion in wetlands of Minjiang river estuary[J]. Journal of Natural Resources,2016,31(4):608-619.[金宝石,高灯州,杨平,等. 闽江河口区互花米草入侵不同年限下湿地土壤有机碳变化[J]. 自然资源学报,2016,31(4):608-619.]
    [9] Wang G,Yang W B,Wang G X,et al. The effects of Spartina alterniflora seaward invasion on soil organic carbon fractions,sources and distribution[J]. Acta Ecologica Sinica,2013,33(8):2474-2483.[王刚,杨文斌,王国祥,等. 互花米草海向入侵对土壤有机碳组分、来源和分布的影响[J]. 生态学报,2013,33(8):2474-2483.]
    [10] Zhang X L,Shi S L,Pan G X,et al. Changes in eco-chemical properties of a mangrove wetland under Spartina invasion from Zhangjiangkou,Fujian,China[J]. Advances in Earth Science,2008,23(9):974-981.[张祥霖,石盛莉,潘根兴,等. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展,2008,23(9):974-981.]
    [11] Shi Z,Xu D Y,Teng H F,et al. Soil information acquisition based on remote sensing and proximal soil sensing:Current status and prospect[J]. Progress in Geography,2018,37(1):79-92.[史舟,徐冬云,滕洪芬,等. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展,2018,37(1):79-92.]
    [12] Askari M S,O'Rourke S M,Holden N M. Evaluation of soil quality for agricultural production using visible-near-infrared spectroscopy[J]. Geoderma,2015,243/244:80-91.
    [13] Ben-Dor E,Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal,1995,59(2):364-372.
    [14] Soriano-Disla J M,Janik L J,Viscarra Rossel R A,et al. The performance of visible,near-,and mid-infrared reflectance spectroscopy for prediction of soil physical,chemical,and biological properties[J]. Applied Spectroscopy Reviews,2014,49(2):139-186.
    [15] Zornoza R,Guerrero C,Mataix-Solera J,et al. Near infrared spectroscopy for determination of various physical,chemical and biochemical properties in Mediterranean soils[J]. Soil Biology and Biochemistry,2008,40(7):1923-1930.
    [16] Ji W J. Removing the effects of soil water and the environment from in situ recorded visible and near-infrared spectra for the prediction of key soil properties in paddy soils[D]. Hangzhou:Zhejiang University,2014.[纪文君. 基于野外vis-NIR高光谱的土壤属性预测及田间水分影响去除研究[D]. 杭州:浙江大学,2014.]
    [17] Scull P,Franklin J,Chadwick O A,et al. Predictive soil mapping:A review[J]. Progress in Physical Geography:Earth and Environment,2003,27(2):171-197.
    [18] Li Q Q,Wang C Q,Yue T X,et al. Prediction of distribution of soil organic matter based on qualitative and quantitative auxiliary variables:A case study in Santai County in Sichuan Province[J]. Progress in Geography,2014,33(2):259-269.[李启权,王昌全,岳天祥,等. 基于定性和定量辅助变量的土壤有机质空间分布预测——以四川三台县为例[J]. 地理科学进展,2014,33(2):259-269.]
    [19] Shi W J,Liu J Y,Du Z P,et al. Surface modelling of soil properties based on land use information[J]. Geoderma,2011,162(3/4):347-357.
    [20] Phachomphon K,Dlamini P,Chaplot V. Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables[J]. Geoderma,2010,155(3/4):372-380.
    [21] Thompson J A,Kolka R K. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling[J]. Soil Science Society of America Journal,2005,69(4):1086-1093.
    [22] Gao F J,Wu X,Shi H D,et al. Prediction of spatial distribution of soil organic matter in a mollisol watershed of China based on BME method[J]. Research of Environmental Sciences,2019,32(8):1365-1373.高凤杰,吴啸,师华定,等. 基于贝叶斯最大熵的黑土区小流域土壤有机质空间分布预测[J]. 环境科学研究,2019,32(8):1365-1373.]
    [23] Song Y Q,Yang L A,Feng W H,et al. Prediction for soil organic matter in vegetable fields based on cooperative variables and extreme learning machine algorithm[J]. Chinese Journal of Soil Science,2017,48(1):118-126.[宋英强,杨联安,冯武焕,等. 基于多源辅助变量和极限学习机的蔬菜地土壤有机质预测研究[J]. 土壤通报,2017,48(1):118-126.]
    [24] Xie H T,Yang X M,Drury C F,et al. Predicting soil organic carbon and total nitrogen using mid-and near-infrared spectra for Brookston clay loam soil in Southwestern Ontario,Canada[J]. Canadian Journal of Soil Science,2011,91(1):53-63.
    [25] Yang H,Kuang B,Mouazen A M. Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction[J]. European Journal of Soil Science,2012,63(3):410-420.
    [26] Wetterlind J,Stenberg B,Söderström M. The use of near infrared(NIR) spectroscopy to improve soil mapping at the farm scale[J]. Precision Agriculture,2008,9(1/2):57-69.
    [27] Kuang B,Mouazen A M. Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale[J]. European Journal of Soil Science,2012,63(3):421-429.
    [28] Walkley A J,Black I A.An examination of the degtjareff method for determining soil organic matter,and a proposed modification of the chromic acid titration method[J]. Soil Science,1934,37(1):29-38.
    [29] Liu X Y,Shi Z Y,Chang Q R,et al. Hyperspectral model for estimation of soil potassium content in loessal soil[J]. Acta Pedologica Sinica,2018,55(2):325-337.[刘秀英,石兆勇,常庆瑞,等. 黄绵土钾含量高光谱估算模型研究[J]. 土壤学报,2018,55(2):325-337.]
    [30] Liu X Y,Wang L,Chang Q R,et al. Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression[J]. Chinese Journal of Applied Ecology,2015,26(7):2107-2114.[刘秀英,王力,常庆瑞,等. 基于相关分析和偏最小二乘回归的黄绵土土壤全氮和碱解氮含量的高光谱预测[J]. 应用生态学报,2015,26(7):2107-2114.]
    [31] Zhang Z L,Zuo X H,Liu F,et al. Spatial heterogeneity of soil readily available potassium and its influencing factors in western Chongqing hilly area[J]. Acta Pedologica Sinica,2020,57(2):307-315.[张子璐,左昕弘,刘峰,等. 渝西丘陵区土壤速效钾空间异质性及影响因素[J]. 土壤学报,2020,57(2):307-315.]
    [32] Yu P P. Study on the distribution of photosynthetic carbon of Spartina alterniflora in plant-soil system[D].Nanjing:Nanjing Normal University,2016.[余培培. 互花米草光合碳在植物-土壤系统中的分配研究[D]. 南京:南京师范大学,2016.]
    [33] Chen G X,Gao D Z,Chen G,et al. Effects of Spartina alterniflora invasion on soil carbon fractions in mangrove wetlands of China[J]. Journal of Soil and Water Conservation,2017,31(6):249-256.[陈桂香,高灯州,陈刚,等. 互花米草入侵对我国红树林湿地土壤碳组分的影响[J]. 水土保持学报,2017,31(6):249-256.]
    [34] Mouazen A M,Saeys W,Xing J,et al. Near infrared spectroscopy for agricultural materials:An instrument comparison[J]. Journal of Near Infrared Spectroscopy,2005,13(2):87-97.
    [35] Chen H Y,Zhao G X,Li X C,et al. Hyper-spectral estimation of soil organic matter content based on wavelet transformation[J]. Chinese Journal of Applied Ecology,2011,22(11):2935-2942.[陈红艳,赵庚星,李希灿,等. 基于小波变换的土壤有机质含量高光谱估测[J]. 应用生态学报,2011,22(11):2935-2942.]
    [36] Yang A X,Ding J L,Li Y H,et al. Study on estimation of deserts soil total phosphorus content by vis-NIR spectra with variable selection[J]. Spectroscopy and Spectral Analysis,2016,36(3):691-696.[杨爱霞,丁建丽,李艳红,等. 基于可见-近红外光谱变量选择的荒漠土壤全磷含量估测研究[J]. 光谱学与光谱分析,2016,36(3):691-696.]
    [37] Li Y,Wang R H,Guan Y L,et al. Prediction analysis of soil total nitrogen content based on hyperspectral[J]. Remote Sensing Technology and Application,2017,32(1):173-179.[李焱,王让会,管延龙,等. 基于高光谱反射特性的土壤全氮含量预测分析[J]. 遥感技术与应用,2017,32(1):173-179.]
    [38] Yu L,Hong Y S,Geng L,et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(14):103-109.[于雷,洪永胜,耿雷,等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报,2015,31(14):103-109.]
    [39] Hou D L,He D J,Hong W,et al. Influence of invasive Spartina alterniflora on soil ecosystem in coastal wetland[J]. Wetland Science & Management,2015,11(4):67-72.[侯栋梁,何东进,洪伟,等. 入侵种互花米草影响我国滨海湿地土壤生态系统的研究进展[J]. 湿地科学与管理,2015,11(4):67-72.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈秋宇,杨仁敏,朱长明.基于VIS-NIR光谱的互花米草入侵湿地土壤有机碳预测研究[J].土壤学报,2021,58(3):694-703. DOI:10.11766/trxb201912110467 CHEN Qiuyu, YANG Renmin, ZHU Changming. VIS-NIR Spectroscopy-Based Prediction of Soil Organic Carbon in Coastal Wetland Invaded by Spartina alterniflora[J]. Acta Pedologica Sinica,2021,58(3):694-703.

复制
分享
文章指标
  • 点击次数:849
  • 下载次数: 2356
  • HTML阅读次数: 1530
  • 引用次数: 0
历史
  • 收稿日期:2019-12-11
  • 最后修改日期:2020-03-19
  • 录用日期:2020-04-14
  • 在线发布日期: 2020-12-07
  • 出版日期: 2021-05-11
文章二维码