小麦玉米轮作条件下不同生物质炭对土壤腐殖物质的影响
作者:
基金项目:

国家自然科学基金项目(41501246)、山东省现代农业产业技术体系棉花岗位创新团队(SDAIT-03-06)和山东省重点研究计划项目(2016CYJS05A01,2017CXGC0303)资助


Effects of Application of Biochar on Soil Humic Substances in Cropland under Wheat-Corn Rotation System
Author:
Fund Project:

National Natural Science Foundation of China (No. 41501246), National Key Research and Development Program of China (No. 2018YFD0800303), Modern Agricultural Technology System Innovation Team of Cotton of Shandong Province (No. SDAIT-03-06), the Key Research and Development Program of Shandong Province (Nos. 2016CYJS05A01,2017CXGC0303)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    生物质炭是有效的土壤固碳材料。通过1年的田间试验探究了小麦玉米轮作施用花生壳生物质炭和木材生物质炭后盐化潮土腐殖物质(HS)含量及化学结构的变化。试验设置不施肥(CK)、常规单施化肥(T1)、花生壳生物质炭(T2)、木材生物质炭(T3)4个处理。结果表明,与CK和T1处理相比,小麦季和玉米季生物质炭处理的土壤有机碳(soil organic carbon,SOC)含量均显著提高了。与小麦季相比,玉米季T2和T3处理胡敏素(humin,Hu)含量分别增加了0.54 g·kg-1和0.35 g·kg-1。在玉米季,T2和T3处理的土壤胡敏酸(humic acid,HA)、富里酸(fulvic acid,FA)和Hu在红外光谱(2 920+2 850)cm-1处吸收峰相对强度均比小麦季升高了。与小麦季相比,玉米季T2处理HA和FA在1 630 cm-1处吸收峰相对面积分别降低了2.46%和5.77%。与T3处理相比,玉米季T2处理Hu在1 630 cm-1处吸收峰相对面积增加了0.33%;本试验中所用花生壳生物质炭芳香性物质相对含量较高。随着时间延长,T2处理土壤Hu的缩合度增加了,氧化度降低了,而T3处理则相反。生物质炭有利于提高土壤HS含量,尤其是Hu的含量。施用生物质炭后土壤Hu的缩合度增加了,氧化度降低了。生物质炭可增加HS亚甲基和甲基相对含量。不同材料来源生物质炭本身的化学结构差异性影响了土壤HS化学结构。

    Abstract:

    [Objective] Biochar is an effective soil carbon sequestrator. In this study, a one year field experiment was carried out to explore variation of content and chemical structure of the humic substances (HS) in salt stress fluvo-aquic soil under wheat-corn rotation.[Method] The experiment was designed to have four treatments, that is, CK (control, no fertilizer);T1 ((NH4)2HPO4 at 750 kg·hm-2);T2 (peanut shell derived biochar 15 t·hm-2 plus (NH4)2·HPO4 at 750 kg·hm-2);T3 (wood derived biochar 15 t·hm-2 plus (NH4)2HPO4 at 750 kg·hm-2).[Results] Results show that biochar amendment increased the content of HS in the soil. Compared to the wheat growing season, the corn growing season had humin (Hu) increased in content by 0.54 g·kg-1 and 0.35 g·kg-1 in Treatments T2 and T3, respectively, and absorption peaks of the humic acid (HA), fulvic acid (FA) and Hu increased, too, in relative intensity at the 2 920 + 2 850 cm-1 band, while it had relative area of the absorption peaks of HA and FA at the 1 630 cm-1 band decreased by 2.46% and 5.77% in Treatment T2. Compared to Treatment T3, Treatment T2 had relative area of the absorption peak of Hu at the 1 630 cm-1 band increased by 0.33% in the corn growing season. The peanut shell derived biochar used in this experiment was relatively higher in content of aromatic groups than the wood derived biochar. Hu increased in condensation degree, while decreased in oxidation degree in Treatment T2, however, it acted reversely in Treatment T3.[Conclusion] Biochar was conducive to increasing of the content of HS, especially Hu, and it increased Hu in condensation degree and decreased Hu in oxidation degree with the experiment going on. Application of biochar could also increase relative contents of methylene and methyl in HS. The biochars derived from different materials are different in chemical structure, which in turn affects chemical composition of the HS in the soil.

    参考文献
    [1] Zheng H J,Xu H D,Wang X L,et al. The effect of different biomass materials on the composition of banana plantation soil organic matter[J]. Soil and Fertilizer Sciences,2019(3):36-41.[郑慧杰,徐豪东,王学良,等. 不同生物质材料对蕉园土壤有机质组成的影响[J]. 中国土壤与肥料,2019(3):36-41.]
    [2] Dou S,Yu S Q,Zhang J J. Effects of carbon dioxide concentration on humus formation in corn stalk decomposition[J]. Acta Pedologica Sinica,2007,44(3):458-466.[窦森,于水强,张晋京. 不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响[J]. 土壤学报,2007,44(3):458-466.]
    [3] Fang J,Jin L,Cheng L L,et al. Advancement in research on stability of biochar in the environment[J]. Acta Pedologica Sinica,2019,56(5):1034-1047.[方婧,金亮,程磊磊,等. 环境中生物质炭稳定性研究进展[J]. 土壤学报,2019,56(5):1034-1047.]
    [4] Zhou G Y,Dou S,Liu S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition[J]. Journal of Agro-Environment Science.,2011,30(10):2075-2080.[周桂玉,窦森,刘世杰. 生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响[J]. 农业环境科学学报,2011,30(10):2075-2080.]
    [5] Conte P. Biochar,soil fertility,and environment[J]. Biology and Fertility of Soils,2014,50(8):1175.
    [6] Bao J P,Yuan G S,Dong F Y,et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil[J]. Acta Pedologica Sinica,2020,57(3):721-729.[包建平,袁根生,董方圆,等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报,2020,57(3):721-729.]
    [7] Lee J H,Eom J Y,Jeong S H,et al. Influence of carbonized crop residue on soil carbon storage in red pepper field[J]. Journal of Ecology and Environment,2017,41:40.
    [8] Wang Y H,Yang M,Hu L C,et al. Effects of biochar amendments synthesized at varying temperatures on soil organic carbon mineralization and humus composition[J]. Journal of Agro-Environment Science,2013,32(8):1585-1591.[王英惠,杨旻,胡林潮,等. 不同温度制备的生物质炭对土壤有机碳矿化及腐殖质组成的影响[J]. 农业环境科学学报,2013,32(8):1585-1591.]
    [9] Zhang G,Dou S,Xie Z B,et al. Effect of biochar application on composition of soil humus and structural characteristics of humic acid[J]. Acta Scientiae Circumstantiae,2016,36(2):614-620.[张葛,窦森,谢祖彬,等. 施用生物质炭对土壤腐殖质组成和胡敏酸结构特征影响[J]. 环境科学学报,2016,36(2):614-620.]
    [10] Pang L H,Shao L,Ge C C,et al. Evaluation of main crop straw resources and economic benefit analysis of fertilizer utilization in Shandong Province[J]. Shandong Agricultural Sciences,2018,50(12):80-85.[庞力豪,邵蕾,葛猜猜,等. 山东省主要农作物秸秆资源评估及肥料化利用经济效益分析[J]. 山东农业科学,2018,50(12):80-85.]
    [11] Bao S D. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press,2000.[鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.]
    [12] Song X Y,Li L Q,Zhang X H,et al. Molecular changes of ferric oxide bound soil humus during the decomposition of maize straw[J]. Chemical and Biological Technologies in Agriculture,2016,3:27.
    [13] Fuentes M,Baigorri R,González-Gaitano G,et al. The complementary use of 1H NMR,13C NMR,FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin[J]. Organic Geochemistry,2007,38(12):2012-2023.
    [14] González-Pérez M,Vidal Torrado P,Colnago L A,et al. 13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil[J]. Geoderma,2008,146(3/4):425-433.
    [15] Artz R R E,Chapman S J,Jean Robertson A H,et al. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands[J]. Soil Biology & Biochemistry,2008,40(2):515-527.
    [16] Li Y,Dou S,Yin X B,et al. Possibility of axenically cultured cyanobacteria forming humic substances[J]. Acta Pedologica Sinica,2016,53(6):1452-1463.[李艳,窦森,尹显宝,等. 纯培养条件下蓝细菌形成腐殖物质的可能性研究[J]. 土壤学报,2016,53(6):1452-1463.]
    [17] Zhang Y,Liu X,Jiao R F,et al. Effects of combined biochar and organic matter on soil fertility and maize growth[J]. Chinese Journal of Eco-Agriculture,2017,25(9):1287-1297.[张影,刘星,焦瑞锋,等. 生物质炭与有机物料配施的土壤培肥效果及对玉米生长的影响[J]. 中国生态农业学报,2017,25(9):1287-1297.]
    [18] Guan L Z,Jiang X N,Zhang G C,et al. Effects of rice straw-derived biochar on organic carbon activity in coastal saline paddy soil[J]. Soils,2019,51(1):205-209.[关连珠,姜雪楠,张广才,等. 添加稻草生物质炭对滨海水稻土有机质活性的影响[J]. 土壤,2019,51(1):205-209.]
    [19] Lehmann J,Joseph S. Biochar for environmental management[M]. London:Routledge,2009.
    [20] Zhao S X,Yu X L,Li Z H,et al. Effects of biochar pyrolyzed at varying temperatures on soil organic carbon and its components:Influence on the composition and propeeties of humic substances[J]. Environmental Science,2017,38(2):769-782.[赵世翔,于小玲,李忠徽,等. 不同温度制备的生物质炭对土壤有机碳及其组分的影响:对土壤腐殖物质组成及性质的影响[J]. 环境科学,2017,38(2):769-782.]
    [21] Ji L,Yue X,Chen L,et al. Effects of biochar and straw on composition of humic substances in soil aggregates[J]. Shandong Agricultural Sciences,2019,51(1):91-97.[纪磊,岳鑫,陈磊,等. 生物质炭和秸秆对土壤团聚体腐殖物质组成的影响[J]. 山东农业科学,2019,51(1):91-97.]
    [22] Song X Y,Yue X,Kong X P,et al. Effects of application of organic materials on composition and structural characteristics of humic substances in saline soil[J]. Acta Pedologica Sinica,2020,57(2):414-424.[宋祥云,岳鑫,孔祥平,等. 有机物料对盐土腐殖物质组成和结构特征的影响[J]. 土壤学报,2020,57(2):414-424.]
    [23] Song X Y,Li Y,Yue X,et al. Effect of cotton straw-derived materials on native soil organic carbon[J]. Science of the Total Environment,2019,663:38-44.
    [24] Bai X Y,Dou S. Effects of applying corn straw biochar on composition and structural characteristics of soil humus[J]. Journal of Jilin Agricultural University,2019,41(3):330-335.[白小艳,窦森. 施玉米秸秆生物质炭对土壤腐殖质组成和结构特征的影响[J]. 吉林农业大学学报,2019,41(3):330-335.]
    [25] Dou S,Zhou G Y,Yang X Y,et al. Biochar and its relation to humus carbon in soil:A short review[J]. Acta Pedologica Sinica,2012,49(4):796-802.[窦森,周桂玉,杨翔宇,等. 生物质炭及其与土壤腐殖质碳的关系[J]. 土壤学报,2012,49(4):796-802.]
    [26] Yun J H,Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions[J]. Ecology and Environmental Sciences,2011,20(4):779-785.[袁金华,徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报,2011,20(4):779-785.]
    [27] Tadini A M,Nicolodelli G,Mounier S,et al. The importance of humin in soil characterisation:A study on amazonian soils using different fluorescence techniques[J]. Science of the Total Environment,2015,537:152-158.
    [28] Xiao X,Chen B L. A direct observation of the fine aromatic clusters and molecular structures of biochars[J]. Environmental Science & Technology,2017,51(10):5473-5482.
    [29] Song X Y,Yang J K,Hussain Q,et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials[J]. Science of the Total Environment,2020,740:140202.
    引证文献
引用本文

宋祥云,宋春燕,柳新伟,李妍,孔祥平,李旭霖,崔德杰.小麦玉米轮作条件下不同生物质炭对土壤腐殖物质的影响[J].土壤学报,2021,58(3):610-618. DOI:10.11766/trxb202005070632 SONG Xiangyun, SONG Chunyan, LIU Xinwei, LI Yan, KONG Xiangping, LI Xulin, CUI Dejie. Effects of Application of Biochar on Soil Humic Substances in Cropland under Wheat-Corn Rotation System[J]. Acta Pedologica Sinica,2021,58(3):610-618.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-07
  • 最后修改日期:2020-07-25
  • 录用日期:2020-10-12
  • 在线发布日期: 2020-12-22
  • 出版日期: 2021-05-11
文章二维码