油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响
作者:
中图分类号:

S158.3

基金项目:

国家油菜产业技术体系建设专项(CARS-12)资助


Effects of Rapeseed/Wheat-Rice Rotation and Fertilization on Soil Nutrients and Distribution of Aggregate Carbon and Nitrogen
Author:
Fund Project:

Supported by the Earmarked Fund for China Agriculture Research System (No. CARS-12)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过田间定位试验探究油菜-水稻与小麦-水稻轮作在不同施肥措施下的土壤养分及团聚体碳氮分布差异,为长江中游油麦交错区水旱轮作模式选择及培肥地力提供依据。利用湖北沙洋的定位试验,选择油-稻和麦-稻轮作的不施肥(CK)、施用化肥(NPK)、化肥与秸秆还田相结合(NPK+S)3个处理,在试验布置的第4年于油菜和小麦收获后取0~20 cm土壤样品,测定土壤有机质和氮磷钾养分含量、孔隙度、团聚体分布和稳定性、团聚体有机碳和全氮贡献率等指标。结果表明:(1)与麦-稻轮作相比,油-稻轮作土壤有机质和有效磷含量在各施肥处理中分别提高了13.1%~19.2%和18.8%~59.5%,土壤全氮含量在秸秆不还田时提高了28.1%(CK处理)和29.2%(NPK处理);(2)秸秆不还田时,油-稻轮作土壤总孔隙度较麦-稻轮作显著提高了8.1%(CK处理)和10.3%(NPK处理),相应的毛管孔隙度分别提高了11.7%和10.5%;(3)与麦-稻轮作相比,油-稻轮作土壤团聚体的平均重量直径(MWD)、平均几何直径(GMD)和大团聚体含量(WSMA)在各施肥处理中均显著提高,且提高了大团聚体有机碳和全氮贡献率;(4)在相同轮作模式中,土壤有机质和养分含量均表现为:CK

    Abstract:

    [Objective] In China, upland-paddy rotation systems are mainly distributed in the Yangtze River Basin, with rapeseed-rice (RR) and wheat-rice (WR) rotations being the main systems. It was noticed that rice productivity varied with the rotation system. Therefore, a long-term experiment, designed to have different treatments concerning rotation system and fertilization pattern, was carried out. The study aimed to explore differences in soil nutrients and distribution of aggregate carbon and nitrogen between RR and WR rotations and between different fertilization methods. It is hoped that the study may providing a scientific basis for optimizing the paddy-upland rotation systems and the fertilization methods as well in the rapeseed-wheat interlaced area of the middle reaches of the Yangtze River.[Method] The field experiment was designed to have two treatments in rotation system (i.e., RR and WR) and three treatments in fertilization, i.e., CK (no fertilization), NPK (chemical fertilization), and NPK+S (chemical fertilization combined with straw returning). Soil samples were collected from the 0-20cm soil layer of each treatment after harvest of the upland crops of the fourth year for analysis of physical and chemical properties, such as soil organic matter, nutrient content, porosity, distribution and stability of soil aggregates, and contribution rate of soil aggregate organic carbon and nitrogen to the soil total.[Result] Compared with WR, RR was 13.1%-19.2% and 18.8%-59.5% higher in content of soil organic matter and available phosphorus when fertilized. Treatment NPK+S was 28.1% than CK and 29.2% higher than Treatment NPK in content of soil total nitrogen. In the group of Treatment NPK, Treatment RR was significantly or 8.1% (in CK) and 10.3% (in Treatment NPK) higher and 11.7% and 10.5%, respectively, higher than Treatment WR in total porosity and capillary porosity. In the group of fertilization treatments (either NPK or NPK+S), Treatment WR was significantly higher than Treatment RR in mean weight diameter (MWD) and geometric mean diameter (GMD) of the water-stable soil aggregates and content of water-stable macroaggregate (WSMA), and in contribution rate of large-sized soil aggregates to total organic carbon and total nitrogen as well. In terms of soil organic matter and nutrient contents the fertilization treatments displayed an order of CK < NPK < NPK+S, and Treatments NPK and NPK+S were significantly higher than CK in soil aggregate stability and contribution rate of large-sized aggregates to total organic carbon and total nitrogen, regardless of rotation patterns. In the group of Treatment WR, Treatment NPK + S was significantly higher than CK and NPK in soil total porosity and capillary porosity, while in the group of Treatment RR, no significant difference was observed in soil porosity between different fertilizer treatments.[Conclusion] All the findings show that under the rapeseed-rice rotation system, application of chemical fertilizer combined with straw returning can increase contents of soil organic matter and soil nutrients, improve bulk density and porosity of the soil, and stabilize soil aggregate structure. Hence, the combination of rapeseed-rice rotation and application of NPK coupled with straw returning could be deemed as an important measure to achieve sustainable development of rice fields.

    参考文献
    [1] Tiemann L K, Grandy A S, Atkinson E E, et al. Crop rotational diversity enhances belowground communities and functions in an agroecosystem[J]. Ecology Letters, 2015, 18(8):761-771.
    [2] McDaniel M D, Tiemann L K, Grandy A S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis[J]. Ecological Applications, 2014, 24(3):560-570.
    [3] Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems:Issues and challenges[J]. Field Crops Research, 2001, 69(2):93-132.
    [4] Shi X J. Characteristics of nutrient cycling in the rice-wheat rotation system[D]. Beijing:China Agricultural University, 2003.[石孝均. 水旱轮作体系中的养分循环特征[D]. 北京:中国农业大学, 2003.]
    [5] National Bureau of Statistics of China, China statistical yearbook[M]. Beijing:China Statistical Press, 2018.[国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2018.]
    [6] Zhu Y. Study on rice yield differences and nutrient mechanism between rapeseed-rice and wheat-rice rotation systems[D]. Wuhan:Huazhong Agricultural University, 2019.[朱芸. 油-稻与麦-稻轮作体系水稻产量差异及其养分机制初探[D]. 武汉:华中农业大学, 2019.]
    [7] Ma P, Yang Z Y, Li Y, et al. Effects of nitrogen reduction in wheat/rape season and nitrogen fertilizer management in rice season on crop yield and nitrogen uptake in crop rotation system[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11):1769-1778.[马鹏, 杨志远, 李郁, 等. 轮作体系下麦/油减量施氮与水稻氮肥运筹对作物产量和氮素吸收的影响[J]. 浙江农业学报, 2019, 31(11):1769-1778.]
    [8] Zhang Z G, Xu Q, Blevins R L. Influences of long-term mulched no-tillage treatment on some soil physical and chemical properties and corn yields[J]. Acta Pedologica Sinica, 1998, 35(3):384-391.[张志国, 徐琪, Blevins R L. 长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J]. 土壤学报, 1998, 35(3):384-391.]
    [9] Xie J, Fang L F, Xu C L, et al. Evaluation and comparison of integrated purple soil fertility under different fertilizations in Southwest China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6):1500-1507.[谢军, 方林发, 徐春丽, 等. 西南紫色土不同施肥措施下土壤综合肥力评价与比较[J]. 植物营养与肥料学报, 2018, 24(6):1500-1507.]
    [10] Lu S, Lepo J E, Song H X, et al. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil[J]. Biology and Fertility of Soils, 2018, 54(8):909-923.
    [11] Bao Y X, Huang Q H, Xu M G, et al. Assessment and effects of integrated soil fertility in red paddy soil under different long-term fertilization[J]. Plant Nutrition and Fertilizer Sciences, 2013, 19(1):74-81.[包耀贤, 黄庆海, 徐明岗, 等. 长期不同施肥下红壤性水稻土综合肥力评价及其效应[J]. 植物营养与肥料学报, 2013, 19(1):74-81.]
    [12] Zhang W L, Dai Z G, Ren T, et al. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems[J]. Scientia Agricultura Sinica, 2016, 49(7):1254-1266.[张维乐, 戴志刚, 任涛, 等. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响[J]. 中国农业科学, 2016, 49(7):1254-1266.]
    [13] Wu J, Guo X S, Lu J W, et al. Effects of continuous straw mulching on soil physical and chemical properties and crop yields in paddy-upland rotation system[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3):69-76.[武际, 郭熙盛, 鲁剑巍, 等. 水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响[J]. 植物营养与肥料学报, 2012, 18(0):69-76.]
    [14] Meng Y H, Jin W J, Dong Z R, et al. Comparison of resource utilization efficiency and economic benefit of different paddy-upland rotation systems in Jianghuai region[J]. Chinese Journal of Ecology, 2019, 38(11):3357-3365.[孟宇辉, 金文俊, 董召荣, 等. 江淮地区不同水旱轮作模式的资源利用效率与经济效益比较[J]. 生态学杂志, 2019, 38(11):3357-3365.]
    [15] Wang F H, Huang R, Gao M, et al. Effect of combined application of biochar and straw on organic carbon content in purple soil aggregates[J]. Acta Pedologica Sinica, 2019, 56(4):929-939.[王富华, 黄容, 高明, 等. 生物质炭与秸秆配施对紫色土团聚体中有机碳含量的影响[J]. 土壤学报, 2019, 56(4):929-939.]
    [16] Bao S D. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press, 2000.[鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000.]
    [17] Liu Z P, Xu J N, She D L, et al. Effects of biochar addition on thermal properties of loamy soil[J]. Acta Pedologica Sinica, 2018, 55(4):933-944.[刘志鹏, 徐杰男, 佘冬立, 等. 添加生物质炭对土壤热性质影响机理研究[J]. 土壤学报, 2018, 55(4):933-944.]
    [18] Nanjing Institute of Soil Science, Chinese Academy of Sciences. Analysis of soil physics and chemistry[M]. Shanghai:Shanghai Science and Technology Press, 1983:62-126.[中国科学院南京土壤研究所, 土壤理化分析[M]. 上海:上海科学技术出版社, 1983:62-126.]
    [19] Liu D S. Discussion on the determination of soil porosity[J]. Chinese Journal of Soil Science, 2004, 35(2):152-153.[刘多森. 关于土壤孔隙度测定的商榷[J]. 土壤通报, 2004, 35(2):152-153.]
    [20] Liu W, Effect of continuous straw incorporation on soil structure, nutrient and organic carbon fraction[D]. Wuhan:Huazhong Agricultural University, 2015.[刘威. 连续秸秆还田对土壤结构性、养分和有机碳组分的影响[D]. 武汉:华中农业大学, 2015.]
    [21] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3):627-633.
    [22] Eynard A, Schumacher T, Lindstrom M J, et al. Aggregate sizes and stability in cultivated South Dakota Prairie Ustolls and Usterts[J]. Soil Science Society of America Journal, 2004, 68(4):1360-1365.
    [23] Yang J C, Han X G, Huang J H, et al. The dynamics of soil organic matter in cropland responding to agricultural practices[J]. Acta Ecologica Sinica, 2003, 23(4):787-796.[杨景成, 韩兴国, 黄建辉, 等. 土壤有机质对农田管理措施的动态响应[J]. 生态学报, 2003, 23(4):787-796.]
    [24] Haefele S M, Konboon Y, Wongboon W, et al. Effects and fate of biochar from rice residues in rice-based systems[J]. Field Crops Research, 2011, 121(3):430-440.
    [25] Liu X W, Lu J W, Li X K, et al. Study on characteristics of dry matter and nutrient accumulation and transportation in leaves of winter oilseed rape(Brassica napus L.)[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4):956-963.[刘晓伟, 鲁剑巍, 李小坤, 等. 冬油菜叶片的物质及养分积累与转移特性研究[J]. 植物营养与肥料学报, 2011, 17(4):956-963.]
    [26] Wang L F, Wang D X, Shangguan Z P. Structural characters and nutrient contents of leaves as well as nitrogen distribution among different organs of big\headed wheat[J]. Acta Ecologica Sinica, 2013, 33(17):5219-5227.[王丽芳, 王德轩, 上官周平. 大穗型小麦叶片性状、养分含量及氮素分配特征[J]. 生态学报, 2013, 33(17):5219-5227.]
    [27] Zhu G, Midmore D J, Yule D, et al. Effect of timing of defoliation on wheat(Triticum aestivum) in central Queensland:2. N uptake and relative N use efficiency[J]. Field Crops Research, 2006, 96(1):160-167.
    [28] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between(micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 2004, 79(1):7-31.
    [29] Wang Y, Li Y Y, Lu J W, et al. Effects of cultivation pattern on growth, seed yield, nutrient uptake and utilization of direct-sowing oilseed rape(Brassica napus L.)[J]. Plant Nutrition and Fertilizer Science, 2013, 19(3):597-607.[王寅, 李雅颖, 鲁剑巍, 等. 栽培模式对直播油菜生长、产量和养分吸收利用的影响[J]. 植物营养与肥料学报, 2013, 19(3):597-607.]
    [30] Liu W, Huang L, Lu J W, et al. Effects of conservation tillages on soil nutrients, structure and crop yield[J]. Chinese Journal of Soil Science, 2015, 46(2):170-177.[刘威, 黄丽, 鲁剑巍, 等. 两种保护性耕作对土壤养分、结构和产量的影响[J]. 土壤通报, 2015, 46(2):170-177.]
    [31] Deng Y S, Ding S W, Cai C F, et al. Spatial distribution of the collapsing alluvial soil physical properties in southeastern Hubei[J]. Scientia Agricultura Sinica, 2014, 47(24):4850-4857.[邓羽松, 丁树文, 蔡崇法, 等. 鄂东南崩岗洪积扇土壤物理性质空间分异特征[J]. 中国农业科学, 2014, 47(24):4850-4857.]
    [32] Jiang C Y, Liu P, Liu M, et al. Dynamics of aggregates composition and C, N distribution in rhizosphere of rice plants in red paddy soils different in soil fertility[J]. Acta Pedologica Sinica, 2017, 54(1):138-149.[江春玉, 刘萍, 刘明, 等. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J]. 土壤学报, 2017, 54(1):138-149.]
    [33] Ma C, Zhou J, Liu M Q, et al. Effects of incorporation of pre-treated straws into field on soil nutrients and labile organic carbon in Shajiang black soil[J]. Acta Pedologica Sinica, 2013, 50(5):915-921.[马超, 周静, 刘满强, 等. 秸秆促腐还田对土壤养分及活性有机碳的影响. 土壤学报, 2013, 50(5):915-921.]
    [34] Pan J L, Dai W A, Shang Z H, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5):526-535.[潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5):526-535.]
    [35] Zhan Q H, Yuan C L, Zhang X P. Ameliorative effect and mechanism of organic materials on Vertisol[J]. Acta Pedologica Sinica, 2003, 40(0):420-425.[詹其厚, 袁朝良, 张效朴. 有机物料对砂姜黑土的改良效应及其机制[J]. 土壤学报, 2003, 40(3):420-425.]
    [36] Zhang H L, Zheng X Q, He Q Y, et al. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems[J]. Journal of Soil and Water Conservation, 2016, 30(4):216-220.[张翰林, 郑宪清, 何七勇, 等. 不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响[J]. 水土保持学报, 2016, 30(4):216-220.)
    [37] Gao H J, Peng C, Zhang X Z, et al. Effects of different straw returning modes on characteristics of soil aggregates Chernozem soil[J]. Journal of Soil and Water Conservation, 2019, 33(1):75-79.[高洪军, 彭畅, 张秀芝, 等. 不同秸秆还田模式对黑钙土团聚体特征的影响[J]. 水土保持学报, 2019, 33(1):75-79.]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张顺涛,任涛,周橡棋,方娅婷,廖世鹏,丛日环,鲁剑巍.油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响[J].土壤学报,2022,59(1):194-205. DOI:10.11766/trxb202004090091 ZHANG Shuntao, REN Tao, ZHOU Xiangqi, FANG Yating, LIAO Shipeng, CONG Rihuan, LU Jianwei. Effects of Rapeseed/Wheat-Rice Rotation and Fertilization on Soil Nutrients and Distribution of Aggregate Carbon and Nitrogen[J]. Acta Pedologica Sinica,2022,59(1):194-205.

复制
分享
文章指标
  • 点击次数:885
  • 下载次数: 2353
  • HTML阅读次数: 2072
  • 引用次数: 0
历史
  • 收稿日期:2020-04-09
  • 最后修改日期:2020-07-23
  • 录用日期:2020-10-14
  • 在线发布日期: 2020-12-10
  • 出版日期: 2022-01-11
文章二维码