生物硝化抑制剂的研究进展及其农业应用前景
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S143.1

基金项目:

国家自然科学基金委中日国际合作项目(31761143015)、江苏省优秀青年基金项目(BK20190108)和山东省重大科技创新工程项目(2019JZZY010701)资助


Progress in Research and Agricultural Application Prospect of Biological Nitrification Inhibitors
Author:
Affiliation:

Fund Project:

Supported by the NSFC-JST Project (No. 31761143015), the Natural Science Fundation for Distinguished Young Scholar of Jiangsu Province of China (No. BK20190108) and the Key Research and Development Program of Shandong Province of China (No. 2019JZZY010701)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在我国农业集约化以及高投入的生产模式下,氮肥利用率较低。相当部分的氮肥以氨(NH3)、硝酸盐(NO3-)以及温室气体氧化亚氮(N2O)等形式损失至环境中,造成生产成本增加,并加剧了生态环境污染。硝化作用是土壤氮循环的关键转化过程,与农田氮素损失密切相关。一些植物的根系能产生和分泌抑制硝化作用的物质,被称为生物硝化抑制剂(BNIs),如果加以利用,是一种高效且环境友好的氮素管理对策。系统总结了国内外生物硝化抑制剂研究领域的重要进展,探讨了根系分泌生物硝化抑制剂的意义、物质种类和功能、分泌及作用机制。以往研究仅认为BNIs是自然生态系统中植物适应低氮环境的一种保氮生存机制,主要关注热带牧草和高粱,本文提出了BNIs在高氮投入的农业生态系统中同样重要,以及相当的粮食作物品种具有高BNI活性的观点,并讨论了其在农业中提高氮素利用率和减少环境污染方面的应用前景,为未来BNIs技术及产品的开发、提升农产品品质、及推动现代农业绿色发展提供借鉴。

    Abstract:

    In China, N fertilizer use efficiency (NUE) is quite low as affected by its high-input intensive production mode in agriculture. A considerable portion of the nitrogen fertilizer applied to the cropping systems is lost to the environment as ammonia (NH3), nitrate (NO3), and nitrous oxide (N2O) as greenhouse gas, thus raising agricultural production cost and aggravating environmental pollution. Nitrification is the key transformation process of nitrogen cycling in soil, and is closely related to nitrogen loss in farmland. Some plants can produce and secrete compounds that inhibit nitrification and are called biological nitrification inhibitors (BNIs). Thu use of such BNIs may be an efficient and environment-friendly nitrogen management strategy. Here, a review of recent key developments in the field of biological nitrification inhibitors at home and abroad was presented, elaborating significances, substance types, functions, secretion and mechanism of BNIs secreted by roots. Researches in the past, particularly with focus on tropical pasture grasses and sorghum, held that releasing of BNIs was a nitrogen-preserving survival mechanism plants used to adapt to low-nitrogen environments in natural ecosystems. This paper suggests that BNIs are equally important in the high-N-input agricultural ecosystems and that a certain number of food crop varieties also have high BNI activity. In addition, BNIs that are produced by plants may evolve as specific responses to nitrifying environments. The mechanisms of BNIs secretion under waterlogged and aerobic conditions are quite similar, but differ somewhat, for instance effect of the parts of the root system exposed to NH4+ and pH. The hypothetic mechanism that BNIs released from plant cell membranes is proposed, for example, 1, 9-decanediol might be released via the ATP-binding cassette (ABC) transporter or members of the multidrug and toxic compound extrusion (MATE) transporter family. In terms of action targets, BNIs may regulate more ammonia-oxidizing microbial species and enzyme sites than the synthetic nitrification inhibitors (SNIs). Prospects of how to make use of BNIs in improving nitrogen utilization and reducing environmental pollution in agriculture are also discussed, such as high BNI-activity plants (such as pasture)-crop rotation, nitrogen fertilizer synergist, use of BNI traits for crop genetic improvement. For future researches, emphases should be laid on the following aspects:(1) to explore BNI functions and BNIs types in cultivation of important crops, and take into account interaction between BNIs substances; (2) to further reveal mechanism of known BNIs substances inhibiting nitrification, in addition to AOA and AOB, attention should be paid to response of the newly discovered Comammox, including other nitrogen transformation processes such as denitrification, and evaluation of potential loss of ammonia via volatilization caused by BNIs; (3) to investigate key genes and molecular genetic mechanisms regulating BNIs secretion through genome-wide association analysis (GWAS); and (4) to explore effects of BNIs in different soil conditions and with different crops in improving agriculture by field experiments, which hopefully may serve as reference for the developing of future BNIs technologies and products, improving the quality of agricultural produces, and promoting the green development of modern agriculture.

    参考文献
    相似文献
    引证文献
引用本文

陆玉芳,施卫明.生物硝化抑制剂的研究进展及其农业应用前景[J].土壤学报,2021,58(3):545-557. DOI:10.11766/trxb202003120113 LU Yufang, SHI Weiming. Progress in Research and Agricultural Application Prospect of Biological Nitrification Inhibitors[J]. Acta Pedologica Sinica,2021,58(3):545-557.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-12
  • 最后修改日期:2020-06-05
  • 录用日期:2020-07-21
  • 在线发布日期: 2020-12-10
  • 出版日期: 2021-05-11