不同稻田生态系统周丛生物对水稻种子萌发和幼苗生长的影响
作者:
基金项目:

国家自然科学基金项目(41825021,31772396)和江苏省自然科学基金项目(BK20171104)资助


Effects of Paddy Periphyton Biofilms on Rice Germination and Seedling Growth Relative to Paddy Ecosystems
Author:
  • SUN Rui

    SUN Rui

    State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the Peoples Republic of China, Zigui, Hubei 443605, China;College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100193, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Pengfei

    SUN Pengfei

    State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the Peoples Republic of China, Zigui, Hubei 443605, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Yonghong

    WU Yonghong

    State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the Peoples Republic of China, Zigui, Hubei 443605, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 41825021 and 31772396), the Natural Science Foundation of Jiangsu Province of China (No. BK20171104)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    周丛生物广泛分布于稻田生态系统淹水环境中,直接影响稻田养分的迁移转化过程及其生物有效性,但其是否影响水稻的生长、发育却鲜有报道。通过室内控制试验,利用延边(YB)、鹰潭(YT)和镇江(ZJ)的水稻土培养周丛生物,并研究了三种周丛生物对水稻种子萌发和幼苗生长的影响。结果表明,不同类型土壤培养的周丛生物主要由变形菌门(Proteobacteria)、蓝细菌门(Cyanobacteria)和拟杆菌门(Bacteroidetes)组成;三种周丛生物的多样性存在显著差异,其中延边周丛生物(YBP)的物种数和Chao1指数显著高于其他两组处理(P < 0.05)。皮尔森(Pearson)相关性分析结果表明,周丛生物群落物种组成和多样性与土壤pH、全磷、总有机碳和全锰含量呈显著正相关(P < 0.01)。此外,三种周丛生物的碳代谢活性存在显著差异(P < 0.05)。其中,延边周丛生物(YBP)在整个检测期内的碳代谢活性最高,鹰潭周丛生物(YTP)的碳代谢活性最低。种子萌发试验结果显示周丛生物的存在显著提高了水稻种子的萌发率(最高18%)和α-淀粉酶活性(P < 0.05),同时提高了水稻幼苗的存活率(鹰潭周丛生物,P < 0.05),增加了水稻幼苗的根生物量和根长(延边周丛生物,P < 0.05)。皮尔森(Pearson)相关性分析结果表明,水稻种子萌发率和存活率与周丛生物理化特征呈显著正相关(P < 0.01)。本研究明确了周丛生物与不同土壤基质间的关系,为调节周丛生物的生长进而提高作物产量提供了新视角。

    Abstract:

    [Objective] Periphyton is ubiquitously distributed in paddy fields, directly affecting nutrient cycles and their bio-availabilities. However, no study regarding effects of periphyton on rice growth has been reported.[Method] In this study, model paddy ecosystems with three types of soils were simulated under controlled conditions to investigate the effects of periphyton on rice seed germination and seedling growth.[Result] Results show that periphyton of three types of soils was mainly composed of Proteobacteria, Cyanobacteria and Bacteroidetes, while the diversity of periphyton of the three soils was significantly different, and that grown in soil from Yanbian (YBP) had the highest OTU number and Chao1 index. Furthermore, there were significant differences in carbon metabolic activity among the three periphyton (P<0.05). The Pearson correlations indicated that periphyton composition and diversity was positively correlated with soil pH, TP, TOC and Mn contents (P<0.05). The carbon metabolism activity of YBP was the highest during the whole growth period, while that of soil from Yingtan (YTP) was the lowest. The presence of periphyton greatly increased the germination index of rice seed (by maximally 18%), and α-amylase activity in the presence of periphyton was increased significantly (P<0.05). Besides, the periphyton covering on paddy soil surface from Yanbian (YBP) significantly promote shoot length and its biomass (P<0.05). The Pearson correlations indicated that seed germination and survival rate was positively correlated with periphyton chemical properties.[Conclusion] To summarize, this study indicates that the presence of periohyton biofilm during seed germination period was propitious for rice growth. Results of this study provided an insight into understanding the periphyton-plant relationships with different soil-types and also new approaches to controlling plant phenology by regulating the growth of periphyton.

    参考文献
    [1] Dickman M. Some effects of lake renewal on phytoplankton productivity and species composition[J]. Limnology and Oceanography, 1969, 14(5):660-666.
    [2] Lamberti G A. The role of periphyton in benthic food webs[M]//Algal Ecology. Amsterdam:Elsevier, 1996:533-572.
    [3] Zang X M, Zhang Y, Lin J N, et al. Variation of periphyton community structure in 2009, 2014 and their relationship with environmental factors in taizi river basin[J]. Research of Environmental Sciences, 2018, 31(6):1057-1067.[臧小苗, 张远, 林佳宁, 等. 2009年与2014年太子河流域附石藻群落结构变化及其与水环境的关系[J]. 环境科学研究, 2018, 31(6):1057-1067.]
    [4] Sun R, Xu Y, Wu Y H, et al. Functional sustainability of nutrient accumulation by periphytic biofilm under temperature fluctuations[J]. Environmental Technology, 2019:1-10.
    [5] Wu Y H, Liu J Z, Rene E R. Periphytic biofilms:A promising nutrient utilization regulator in wetlands[J]. Bioresource Technology, 2018, 248:44-48.
    [6] Kasai F. Shifts in herbicide tolerance in paddy field periphyton following herbicide application[J]. Chemosphere, 1999, 38(4):919-931.
    [7] Cui Z L, Zhang H Y, Chen X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696):363-366.
    [8] Yagi K, Tsuruta H, Kanda K, et al. Effect of water management on methane emission from a Japanese rice paddy field:Automated methane monitoring[J]. Global Biogeochemical Cycles, 1996, 10(2):255-267.
    [9] Battin T J, Kaplan L A, Denis Newbold J, et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms[J]. Nature, 2003, 426(6965):439-442.
    [10] Guzzon A, Bohn A, Diociaiuti M, et al. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment[J]. Water Research, 2008, 42(16):4357-4367.
    [11] Sun R, Sun P F, Zhang J H, et al. Microorganisms-based methods for harmful algal blooms control:A review[J]. Bioresource Technology, 2018, 248:12-20.
    [12] Ellwood N T W, Di Pippo F, Albertano P. Phosphatase activities of cultured phototrophic biofilms[J]. Water Research, 2012, 46(2):378-386.
    [13] Inglett P W, Reddy K R, McCormick P V. Periphyton chemistry and nitrogenase activity in a northern everglades ecosystem[J]. Biogeochemistry, 2004, 67(2):213-233.
    [14] Lu H Y, Wan J J, Li J Y, et al. Periphytic biofilm:A buffer for phosphorus precipitation and release between sediments and water[J]. Chemosphere, 2016, 144:2058-2064.
    [15] Whitton B A, Roger P A. Use of blue-green algae and azolla in rice culture[J]. 1989, 25:89-100
    [16] Diazolarte J, Valoyes-Valois V, Guisande C, et al. Periphyton and phytoplankton associated with the tropical carnivorous plant Utricularia foliosa[J]. Aquatic Botany, 2007, 87(4):285-291.
    [17] Larned S T. A prospectus for periphyton:Recent and future ecological research[J]. Journal of The North American Benthological Society, 2010, 29(1):182-206.
    [18] Lu H Y, Liu J Z, Kerr P G, et al. The effect of periphyton on seed germination and seedling growth of rice(Oryza sativa) in paddy area[J]. The Science of the Total Environment, 2017, 578:74-80.
    [19] Ministry of Health of the People's Republic of China. Food additive-Alpha-amylase preparation:GB8275-2009[S]. Beijing:China Standard Press, 2009.[中华人民共和国卫生部. 食品添加剂α-淀粉酶制剂:GB8275-2009[S]. 北京:中国标准出版社, 2009.]
    [20] Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000.[鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社, 2000.]
    [21] Ma L, Guo Z B, Wang D Z, et al. Effect of long-term application of phosphorus fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black soil relative to P application rate[J].Acta Pedologica Sinica, 2019, 56(6):1459-1470.[马垒, 郭志彬, 王道中, 等. 长期三水平磷肥施用梯度对砂姜黑土细菌群落结构和酶活性的影响[J]. 土壤学报, 2019, 56(6):1459-1470.]
    [22] Ren C J, Zhang W, Zhong Z K, et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics[J]. Science of the Total Environment, 2018, 610/611:750-758.
    [23] Zhang X Y, Sui Y Y, Zhang X D, et al. Spatial variability of nutrient properties in black soil of Northeast China[J]. Pedosphere, 2007, 17(1):19-29.
    [24] Zhong W H, Cai Z. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2):84-91.
    [25] Zhang Z J, Zhang J Y, He R, et al. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin.[J]. Environmental Pollution, 2007, 145(2):425-433.
    [26] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3):626-631.
    [27] Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils[J]. Environmental Microbiology, 2011, 13(6):1642-1654.
    [28] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15):5111-5120.
    [29] Ramirez K S, Craine J M, Fierer N. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied[J]. Soil Biology & Biochemistry, 2010, 42(12):2336-2338.
    [30] Wang C, Zheng M M, Song W F, et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in Southern China[J]. Soil Biology and Biochemistry, 2017, 113:240-249.
    [31] van Nostrand J D, Sowder A G, Bertsch P M, et al. Effect of pH on the toxicity of nickel and other divalent metals to Burkholderia cepacia PR1(301)[J]. Environmental Toxicology and Chemistry, 2005, 24(11):2742-2750.
    [32] Tang J, Zhu N, Zhu Y, et al. Responses of periphyton to Fe2O3 nanoparticles:A physiological and ecological basis for defending nanotoxicity[J]. Environmental Science & Technology, 2017, 51(18):10797-10805.
    [33] Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biology & Biochemistry, 1998, 30(3):369-378.
    [34] Bradford K J. A water relations analysis of seed germination rates[J]. Plant Physiology, 1990, 94(2):840-849.
    [35] Laghmouchi Y, Belmehdi O, Bouyahya A, et al. Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum[J]. Biocatalysis and Agricultural Biotechnology, 2017, 10:156-160.
    [36] Vieira B, Bicalho E M, Munnebosch S, et al. Abscisic acid regulates seed germination of Vellozia species in response to temperature[J]. Plant Biology, 2017, 19(2):211-216.
    [37] MacLeod N A, Barton D R. Effects of light intensity, water velocity, and species composition on carbon and nitrogen stable isotope ratios in periphyton[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(8):1919-1925.
    [38] Belnap J, Prasse R, Harper K T. Influence of biological soil crusts on soil environments and vascular plants[J]. Biological Soil Crusts:Structure, Function, and Management, 2003:281-300. https://doi.org/10.1007/978-3-642-56475-8_21.
    [39] Tabatabaei S, Ehsanzadeh P, Etesami H, et al. Indole-3-acetic acid(IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat(Triticum turgidum L.)[J]. Spanish Journal of Agricultural Research, 2016, 14(1):0802.
    [40] Fatima Z, Saleemi M K, Zia M, et al. Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat[J]. African Journal of Biotechnology, 2009, 8(2):219-225.
    [41] McPhail K L, Armstrong D J, Azevedo M D, et al. 4-Formylaminooxyvinylglycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria[J]. Journal of Natural Products, 2010, 73(11):1853-1857.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙瑞,孙朋飞,吴永红.不同稻田生态系统周丛生物对水稻种子萌发和幼苗生长的影响[J].土壤学报,2022,59(1):231-241. DOI:10.11766/trxb202004190180 SUN Rui, SUN Pengfei, WU Yonghong. Effects of Paddy Periphyton Biofilms on Rice Germination and Seedling Growth Relative to Paddy Ecosystems[J]. Acta Pedologica Sinica,2022,59(1):231-241.

复制
分享
文章指标
  • 点击次数:761
  • 下载次数: 1949
  • HTML阅读次数: 1413
  • 引用次数: 0
历史
  • 收稿日期:2020-04-19
  • 最后修改日期:2020-08-21
  • 录用日期:2020-09-02
  • 在线发布日期: 2020-12-10
  • 出版日期: 2022-01-11
文章二维码