淮北平原砂姜黑土区砂姜的空间分布及其驱动因素
作者:
中图分类号:

S159.2

基金项目:

国家自然科学基金项目(41930753,41725004)、国家重点研发计划项目课题(2016YFD0300809)和江苏省重点研发计划(BE2017385)共同资助;


Spatial Distribution of Shajiang Content in Shajiang Black Soil of Huaibei Plain and Its Influencing Factors
Author:
Fund Project:

National Natural Science Foundation of China (Nos. 41930753; 41725004), the National Key Research and Development Program of China (No. 2016YFD0300809), and the Primary Research & Development Plan of Jiangsu Province of China (No. BE2017385)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    砂姜黑土的典型特征就是土体内含有“砂姜”。本论文基于经典统计学及地统计学方法,研究了淮北平原砂姜黑土区东西(河南上蔡到安徽泗县)及南北(河南鹿邑到安徽怀远)两条典型样带0~100 cm土层内砂姜含量分布及0~20 cm土壤性质、地形因子和气候特征。结果表明:(1)东西样带内从西向东、南北样带内从北向南,砂姜含量逐渐增多,埋深也逐渐变浅;(2)两条样带砂姜含量随土层的加深呈增加的趋势,而极大值出现在20~60 cm土层,砂姜以2~5 mm粒级的占比最大(40%~44%);(3)相关分析表明砂姜含量与蒙脱石组成比例(r=0.321,P < 0.01)、年均降水量(r=0.416,P < 0.01)、年均温度(r=0.369,P < 0.01)呈正相关,而与土壤全钙(r=-0.279,P < 0.05)、高程(r=-0.387,P < 0.01)、年均蒸发量(r=-0.392,P < 0.01)呈负相关。可见,淮北平原砂姜含量受地形、气候条件和土壤性质等因素的共同作用,形成了“西低东高,北低南高”空间分布格局。

    Abstract:

    [Objective] Shajiang black soil (Vertisol), one of the major soil types in China with low or medium productivity, is mainly distributed in the Huaibei plain. As the name suggests, in soil configuration, the soil is composed of a black soil layer and a Shajiang layer, with the former overlaid with the latter. Although the black soil layer is dark in color, it is very low in organic matter content (< 1%). "Shajiang", a special kind of calcareous concretion, is a major component and a typical feature of Shajiang black soil. The presence of Shajiang leads to high heterogeneity of the soil and significantly influences physical and chemical properties of the soil, thus restraining root growth and crop yield. Shajiang is a byproduct of soil-forming process, and shows high spatial variability. However, little is yet known about spatial distribution of Shajiang and its driving factors in the Huaibei Plain. The objective of this study was to investigate spatial distribution of Shajiang its driving factors in the Plain.[Method] Based on the classical statistics and geo-statistics, this study selected two bands of Shajiang black soil, typical of the area, extending from west to east and from north to south in the plain for investigation of contents of Shajiang in the 0~100 cm soil layer, therein. Meanwhile, soils in the 0~20 cm soil layer were sampled for analysis of physico-chemical properties. Besides, topographic and climate data of the sampling sites were collected too. The west-east band extended from Shangcai County in Henan Province to Sixian County in Anhui Province (360 km long, and a total of 35 samples collected), and the north-south band did from Luyi County in Henan Province to Huaiyuan County in Anhui Province (195 km long and a total of 29 samples collected).[Result] (1) the two bands showed a general increasing trend from west to east and from north to south, separately in Shajiang content, but a decreasing one in depth of their burial; (2) Shajiang content increased with soil depth in both bands, and peaked in the 20~60 cm soil layer. The analysis of particle size composition of Shajiang shows that the 2~5 mm fraction of Shajiang accounted for 40%~44% of the total; (3) Similar to Shajiang content in variation trend, increasing from west to east and from north to south in the two bands, the proportion of montmorillonite, MAT and MAP increased too, but MAE and elevation did reversely. However, the content of total calcium only showed a decreasing trend from north to south in the north-south band; and (4) Pearson correlation analysis shows that Shajiang content was positively related to montmorillonite content (r=0.321, P < 0.01), MAP (r=0.416, P < 0.01), and MAT (r=0.369, P < 0.01), but negatively to total calcium content (r=-0.279, P < 0.05), elevation (r=-0.387, P < 0.01), and MEA (r=-0.392, P < 0.01). Principal component analysis shows that topography (37.4%) and climate conditions (38.4%) were factors more important than soil properties affecting Shajiang content (24.1%).[Conclusion] Therefore, it can be concluded that Shajiang content in the Huaibei Plain is mainly regulated by topography, climate conditions and soil properties together, thus forming a spatial distribution pattern of "low in the northwest, and high in the southeast".

    参考文献
    [1] Li D C, Zhang G L, Gong Z T. On taxonomy of Shajiang black soils in China[J]. Soils, 2011, 43(4):623-629.[李德成, 张甘霖, 龚子同. 我国砂姜黑土土种的系统分类归属研究[J]. 土壤, 2011, 43(4):623-629.]
    [2] Zhang J M. Research on comprehensive management of Shajiang Black Soil.[M]. Hefei:Anhui Science & Technology Publishing House, 1988.[张俊民. 砂姜黑土综合治理研究[M]. 合肥:安徽科学技术出版社, 1988.]
    [3] Liu L W. Formation and evolution of vertisols in Huaibei plain[J]. Pedosphere, 1991, 1(1):3-15.
    [4] Cao Y J. Study on distribution and formation of the calcareous concretions soil in Huaibei Plain, Anhui Province[D]. Hefei:Hefei University of Technology, 2009.[曹亚娟. 安徽淮北平原钙质结核土的分布及成因研究[D]. 合肥:合肥工业大学, 2009.]
    [5] Wei C L. Shrinkage-cracking characteristics of lime concretion black soil and improvement with biochar[D]. Beijing:China Agricultural University, 2017.[魏翠兰. 砂姜黑土收缩开裂特征及生物质炭改良效应[D]. 北京:中国农业大学, 2017.]
    [6] Gu F. Characteristics and modeling of soil water and nutrition dynamics in a typical calcic vertisol[D]. Beijing:China Agricultural University, 2018.[谷丰. 典型砂姜黑土区农田土壤水分养分动态变化特征及模拟[D]. 北京:中国农业大学, 2018.]
    [7] Gargiulo L, Mele G, Terribile F. The role of rock fragments in crack and soil structure development:A laboratory experiment with a vertisol[J]. European Journal of Soil Science, 2015, 66(4):757-766.
    [8] Gu F, Ren T S, Li B G, et al. Accounting for calcareous concretions in calcic vertisols improves the accuracy of soil hydraulic property estimations[J]. Soil Science Society of America Journal, 2017, 81(6):1296-1302.
    [9] Ilek A, Kucza J, Witek W. Using undisturbed soil samples to study how rock fragments and soil macropores affect the hydraulic conductivity of forest stony soils:Some methodological aspects[J]. Journal of Hydrology, 2019, 570:132-140.
    [10] Tetegan M, Nicoullaud B, Baize D, et al. The contribution of rock fragments to the available water content of stony soils:Proposition of new pedotransfer functions[J]. Geoderma, 2011, 165(1):40-49.
    [11] Coppola A, Dragonetti G, Comegna A, et al. Measuring and modeling water content in stony soils[J]. Soil & Tillage Research, 2013, 128:9-22.
    [12] Diaz F J, Jimenez C, Tejedor M. Influence of the thickness and grain size of tephra mulch on soil water evaporation[J]. Agricultural Water Management, 2005, 74(1):47-55.
    [13] Hlavacikova H, Holko L, Danko M, et al. Estimation of macropore flow characteristics in stony soils of a small mountain catchment[J]. Journal of Hydrology, 2019, 574:1176-1187.
    [14] Shi Z J, Xu L H, Wang Y H, et al. Effect of rock fragments on macropores and water effluent in a forest soil in the stony mountains of the Loess Plateau, China[J]. African Journal of Biotechnology, 2012, 11(39):9350-9361.
    [15] Du Z Y, Cai Y J, Yan Y, et al. Embedded rock fragments affect alpine steppe plant growth, soil carbon and nitrogen in the northern Tibetan Plateau[J]. Plant and Soil, 2017, 420(1/2):79-92.
    [16] Zhang Y H, Zhang M X, Niu J Z, et al. Rock fragments and soil hydrological processes:Significance and progress[J]. Catena, 2016, 147:153-166.
    [17] Jin Q. Quaternary system of Huaibei Plain, Anhui Province[M]. Beijing:Geological Publishing House, 1990.[金权. 安徽淮北平原第四系[M]. 北京:地质出版社, 1990.]
    [18] Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000.[鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.]
    [19] Yang Z J, Bing H J, Zhou J, et al. Variation of mineral composition along the soil chronosequence at the Hailuogou glacier foreland of Gongga mountain[J]. Acta Pedologica Sinica, 2015, 52(3):507-516.[杨子江, 邴海健, 周俊, 等.贡嘎山海螺沟冰川退缩区土壤序列矿物组成变化[J]. 土壤学报, 2015, 52(3):507-516.]
    [20] Ma L, Zhang M. The occurrence and soil forming characteristics of black soil with ginger[J]. Chinese of Journal of Soil Science, 1993, 24(1):1-4.[马丽, 张民.砂姜黑土的发生过程与成土特征[J]. 土壤通报, 1993, 24(1):1-4.
    [21] Shi G J, Wu D X, Xu D S, et al. Study of structure category and formation reason of calcareous concretion soil in Huaibei Plain[J]. Journal of Hefei University of Technology(Natural Science), 2010, 33(11):1681-1685, 1693.[施国军, 吴道祥, 徐冬生, 等. 淮北平原钙质结核土的结构类型和成因分析[J]. 合肥工业大学学报(自然科学版), 2010, 33(11):1681-1685, 1693.]
    [22] Wu D X, Cao Y J, Zhong X M, et al. Distribution, age and genesis of cohesive soil containing calcareous nodules in Huaibei Plain of Anhui Province[J]. Rock and Soil Mechanics, 2009, 30(S2):434-439.[吴道祥, 曹亚娟, 钟轩民, 等. 安徽淮北平原钙质结核土分布及成因年代研究[J]. 岩土力学, 2009, 30(S2):434-439.]
    [23] Wang Y K, Guo Z C, Zhang Z B, et al. Effect of tillage practices on soil physical properties and maize growth in Shajiang black soil(Vertisol)[J]. Acta Pedologica Sinica, 2019, 56(6):1370-1380.[王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响[J]. 土壤学报, 2019, 56(6):1370-1380.]
    [24] Liu L W, Zhang M. Element enrichment and environmental significance of denaturated soils with Fe, Mn, oxide and calcareous nodules[J]. Soils, 1995, 27(5):262-268.[刘良梧, 张民. 变性土铁锰氧化物结核与钙质结核的元素富集及其环境意义[J]. 土壤, 1995, 27(5):262-268.]
    [25] Chen X, Hao Z C, Dai M L. Dynamic analysis of shallow groundwater in Huaibei Plain[J]. Journal of Anhui Agricultural Sciences, 2016, 44(28):73-76.[陈玺, 郝振纯, 戴明龙. 淮北平原浅层地下水动态研究[J]. 安徽农业科学, 2016, 44(28):73-76.]
    [26] Zhu K, Zhang X W, Xia J, et al. Simulation of groundwater level distribution in a large area using digital elevation model as auxiliary information[J]. Journal of Hydraulic Engineering, 2004, 35(11):15-21.[朱奎, 张祥伟, 夏军, 等. 利用DEM作为辅助信息推定大区域地下水初始流场[J]. 水利学报, 2004, 35(11):15-21.]
    [27] Zhang X M. Variation characteristics of soil moisture variation and its relationship with groundwater transformation in Huaibei Plain of Anhui Province[D]. Handan, Hebei:Hebei University of Engineering, 2019.[张晓萌. 安徽淮北平原土壤水分变化特征及其与地下水转化关系研究[D]. 河北邯郸:河北工程大学, 2019.]
    [28] Wang X. Study about the rule of gravel-sand chemical elements leaching simulation test of Ningxia Zhongwei area[D]. Yinchuan:Ningxia University, 2018.[王霞. 宁夏中卫地区压砂砾石元素淋溶规律模拟实验研究[D].银川:宁夏大学, 2018.]
    [29] Hu W W, Wang S C, Wang G X, et al. Study on the groundwater dynamic of the Huaibei alluvial plain in Anhui Province[J]. Journal of Natural Resources, 2009, 24(11):1893-1901.[胡巍巍, 王式成, 王根绪, 等. 安徽淮北平原地下水动态变化研究[J]. 自然资源学报, 2009, 24(11):1893-1901.]
    [30] Zhang M, Gong Z T. Study on carbonate sources of soil and calcareous nodules with stable isotopes[J]. Soils, 1994, 26(2):65-69, 94.[张民, 龚子同. 用稳定同位素探讨土壤及钙质结核的碳酸盐来源[J]. 土壤, 1994, 26(2):65-69, 94.]
    [31] Hao Z C, Chen X, Wang J H, et al. Trend and impact factors of evaporation from shallow phreatic groundwater of bare soil on Huaibei Plain in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):73-78.[郝振纯, 陈玺, 王加虎, 等. 淮北平原裸土潜水蒸发趋势及其影响因素分析[J]. 农业工程学报, 2011, 27(6):73-78.]
    [32] Gao D, Lu S W, Rao L Y, et al. Soil respiration flux of four land-use types in non-growing season in North Plain of Huai River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4):94-99.[高东, 鲁绍伟, 饶良懿, 等. 淮北平原四种土地利用类型非生长季土壤呼吸速率[J]. 农业工程学报, 2011, 27(4):94-99.]
    [33] Zhang Y F, Wang Y F, Liu L X. Function mechanism between the drought and waterlogging disaster and the soil-structure of the Shajiang soil in Huaibei plain[J]. Progress in Geography, 2001, 20(2):169-176.[张义丰, 王又丰, 刘录祥. 淮北平原砂姜黑土旱涝(渍)害与水土关系及作用机理[J]. 地理科学进展, 2001, 20(2):169-176.]
    [34] He S, Tan W F, Xie H X. Composition and Genesis of clay minerals in salinized soils in Junggar basin and Tarim basin of Xinjiang, China[J]. Soils, 2019, 51(3):566-577.[何帅, 谭文峰, 谢海霞. 准噶尔和塔里木盆地盐渍化土壤黏土矿物组成特征及成因[J]. 土壤, 2019, 51(3):566-577.]
    [35] Xie H X. The characateristic of soil clay minerals in mountain and basin of north slope of Tianshan mountain and their responses for soil-forming environments[D]. Wuhan:Huazhong Agricultural University, 2019.[谢海霞. 天山北坡山盆系统土壤黏土矿物特征及其对成土环境的响应[D]. 武汉:华中农业大学, 2019.]
    [36] Li C A, Wu J P, Cao J X. Form and gemetic dynamics characteristics of calcareous concretion in the loess of northwestern Hebei Province and its stratigraohy significance[J]. Journal of China University of Geosciences(Earth Science), 1995, 20(5):511-514.[李长安, 吴金平, 曹江雄. 冀西北黄土钙质结核形态及其成因动力学特征与地层环境意义.中国地质大学学报(地球科学), 1995, 20(5):511-514.]
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈月明,高磊,张中彬,郭自春,邵芳荣,彭新华.淮北平原砂姜黑土区砂姜的空间分布及其驱动因素[J].土壤学报,2022,59(1):148-160. DOI:10.11766/trxb202004280202 CHEN Yueming, GAO Lei, ZHANG Zhongbin, GUO Zichun, SHAO Fangrong, PENG Xinhua. Spatial Distribution of Shajiang Content in Shajiang Black Soil of Huaibei Plain and Its Influencing Factors[J]. Acta Pedologica Sinica,2022,59(1):148-160.

复制
分享
文章指标
  • 点击次数:1038
  • 下载次数: 2373
  • HTML阅读次数: 1820
  • 引用次数: 0
历史
  • 收稿日期:2020-04-28
  • 最后修改日期:2020-07-06
  • 录用日期:2020-08-25
  • 在线发布日期: 2020-12-08
  • 出版日期: 2022-01-11
文章二维码