被孢霉对土壤养分有效性和秸秆降解的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S154.39

基金项目:

国家重点研发计划项目(2016YFD0300802)、国家自然科学基金项目(41807017)和江苏省自然科学基金项目(BK20171106)共同资助


Effects of Mortierella on Nutrient Availability and Straw Decomposition in Soil
Author:
Affiliation:

Fund Project:

Supported by the National Key Research and Development Program of China (No. 2016YFD0300802), the National Natural Science Foundation of China (No. 41807017), and the Natural Science Foundation of Jiangsu Province of China (No. BK20171106)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    腐生真菌被孢霉在富含有机质的土壤中丰度很高,为土壤碳及养分转化的关键微生物成员。然而目前关于土著被孢霉在秸秆分解过程中对土壤养分有效性影响的研究较少。采用常规平板稀释法从长期施用有机肥的红壤和砂姜黑土中分离真菌菌株,将分离得到的菌株序列与基因库(GenBank)中的序列进行比较,鉴定出了两株被孢霉菌株,即高山被孢霉(Mortierella alpina)和长孢被孢霉(Mortierella elongata)。通过设置盆栽试验,每盆土接种10 g菌剂,研究两株被孢霉对秸秆降解过程中土壤养分有效性和细菌群落的影响。结果表明,在红壤中,与未接种对照相比,接种高山被孢霉处理的土壤有效磷含量提高了29.0%,长孢被孢霉处理下土壤有效氮含量和β-葡萄糖苷酶活性分别提高了15.5%和81.3%。在砂姜黑土中,与对照相比,被孢霉菌株显著提高了土壤可溶性有机碳,速效氮和有效磷的含量以及β-葡萄糖苷酶和磷酸酶的活性。两株被孢霉在红壤中抑制了秸秆的降解,并显著改变细菌群落组成。而在砂姜黑土中,被孢霉菌株促进了秸秆降解,且对细菌群落结构影响不大。在红壤中,苍白杆菌属(Ochrobactrum)、无色杆菌属(Achromobacter)和链霉菌属(Streptomyces)是导致接种处理和对照之间细菌群落差异贡献最大的类群。本研究为土著被孢霉在农业土壤中秸秆分解和养分转化中的作用提供了理论依据。

    Abstract:

    [Objective] Saprophytic fungi can convert complex organic substances into available components, which is closely related to soil nutrient availability and carbon (C) sequestration. Mortierella has been reported to be substantially enhanced after long-term fertilization in agricultural soils. Studies in the past demonstrated that some species of Mortierella did make important contributions to soil nutrient transformation and availability, and were able to degrade hemicellulose, cellulose and lignin, and hence could directly affect straw decomposition and alter nutrient status of the soil. Furthermore, Mortierella species show great ability to excrete a large volume of polyunsaturated fatty acids, which contained abundant C sources, thus altering the soil microhabitat. It was therefore, presumed that Mortierella inoculants could affect soil microbial communities in part by changing their nutrient uptake, thus indirectly influencing soil nutrient transformation and availability in the soil. However, empirical evidence of the effects of Mortierella inoculants on the soil microbial communities under planting conditions is seldom available. The objective of this study was to explore how indigenous strains of Mortierella affect soil nutrient availability during the process of straw decomposition.[Method] Two strains of Mortierella (Mortierella alpina and Mortierella elongata) were isolated from two types of agricultural soils (red soil and Shajiang black soil) that had been applied with organic manure for decades. A pot experiment, designed to have three treatments, i.e. no inoculation (Control); inoculation with Mortierella alpina (Ma); and inoculation with Mortierella elongata (Me), and three replicates for each treatment, was conducted with the two soils packed in the pots separately and incorporated with straw. Availability of C, nitrogen (N) and phosphorus (P) and activities of β-glucosidase, N-acetyl-β-glucosaminidase and phosphatase were determined. Chemical C structure of the residual straw and bacterial community composition in the soil was analyzed with the aid of the solid state 13C-nuclear magnetic resonance (13C-NMR) spectroscopy and the technique of 16S rRNA gene amplicon sequencing, respectively.[Result] In red soil, Treatment Ma increased the content of soil available P by 29.0%, while Treatment Me did the content of soil available N and the activity of β-glucosidase by 15.5% and 81.3%, respectively. In Shajiang black soil, both Mortierella treatments notably increased the content of soil available N and the activity of β-glucosidase. In addition, Treatment Ma significantly increased the activity of phosphatase, while Treatment Me did the content of dissolved organic C and soil available P by 16.2% and 11.5%, respectively. In red soil, Mortierella inoculants inhibited straw decomposition and significantly altered composition and metabolic functions of the bacterial community, while in Shajiang black soil, they promoted straw degradation but had little effect on bacterial community structure. Ochrobactrum, Achromobacter and Streptomyces were the most influential taxa contributing to differences in bacterial community between the treatments and the control in red soil. Network analysis showed that the interactions between soil microbes were more complex connectedness in red soil than in Shajiang black soil. Lysobacter, Stenotrophomonas, Pantoea, Phyllobacteriaceae and Solirubrobacterales were identified as the keystone taxa in red soil, while Comamonadaceae, Lysobacter, Cytophagaceae and Serpens flexibilis were in Shajiang black soil. These keystone taxa acted as decomposers or biocontrol agents, and played important roles in maintaining microbial interactions and in potential processes of straw decomposition.[Conclusion] The present study has demonstrated that Mortierella alpina and Mortierella elongata can improve soil C, N and P availability and associated enzyme activities, and provide evidence of roles of indigenous strains of Mortierella strains on straw decomposition and nutrient transformation in agricultural soils.

    参考文献
    相似文献
    引证文献
引用本文

宁琪,陈林,李芳,张丛志,马东豪,蔡泽江,张佳宝.被孢霉对土壤养分有效性和秸秆降解的影响[J].土壤学报,2022,59(1):206-217. DOI:10.11766/trxb202006020213 NING Qi, CHEN Lin, LI Fang, ZHANG Congzhi, MA Donghao, CAI Zejiang, ZHANG Jiabao. Effects of Mortierella on Nutrient Availability and Straw Decomposition in Soil[J]. Acta Pedologica Sinica,2022,59(1):206-217.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-02
  • 最后修改日期:2020-07-10
  • 录用日期:2020-08-28
  • 在线发布日期: 2020-12-10
  • 出版日期: 2022-01-11