融合无人机载激光雷达与多光谱遥感数据的冬小麦叶面积指数反演
作者:
基金项目:

国家重点研发计划项目(2016YFD0300601)和国家自然科学基金项目(41877021,41771265)资助


Inversion of Leaf Area Index in Winter Wheat by Merging UAV LiDAR with Multispectral Remote Sensing Data
Author:
Fund Project:

National Key R&D Program of China (No. 2016YFD0300601), National Natural Science Foundation of China (Nos. 41877021, 41771265)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了进一步挖掘无人机载激光雷达(Light Laser Detection and Ranging,LiDAR)在农作物长势监测方面的潜力,探究机载LiDAR与多光谱遥感数据融合反演冬小麦叶面积指数(Leaf Area Index,LAI)的效果,本研究以无人机载LiDAR和可见光-近红外多光谱为研究手段,获取试验区冬小麦孕穗期的无人机载LiDAR点云和多光谱数据,从中提取并筛选合适的LiDAR点云结构参数和植被指数,借助多元线性回归法(Multivariable Linear Regression,MLR)和偏最小二乘回归法(Partial Least Squares Regression,PLSR),通过融合LiDAR点云结构参数与植被指数以及单独使用植被指数作为模型输入参数,分别与实测LAI构建了LAI反演模型。用决定系数(Coefficient of Determination,R2)和均方根误差(Root Mean Square Error,RMSE)来评价模型时,结果显示融合LiDAR点云与多光谱数据能够较好地反演冬小麦LAI。而且,无论是利用MLR还是PLSR法,融合LiDAR点云结构参数与植被指数的模型(MLR:R2=0.901,RMSE=0.480;PLSR:R2=0.909,RMSE=0.445(n=16))均优于仅使用植被指数的模型(MLR:R2=0.897,RMSE=0.492;PLSR:R2=0.892,RMSE=0.486(n=16))。因此,加入无人机载LiDAR数据可以一定程度上弥补光谱数据在作物垂直方向上信息提取不足的缺陷,提高冬小麦LAI的反演精度,为冬小麦LAI反演提供了更优的手段。

    Abstract:

    [Objective] In order to further tap the potential of unmanned aerial vehicle (UAV) carried LiDAR to monitor crop growth and to explore effect of merging UAV LiDAR with multispectral data in inversing leaf area index (LAI) in winter wheat, this study was carried out.[Method] In this study, with the aid of UAV LiDAR scanners and visible-near infrared multispectral cameras, UAV LiDAR point cloud and multispectral data of the winter wheat at the booting stage in experiment zone were collected. From the data, four LiDAR point cloud structure parameters, i.e., three-dimensional volumetric parameters (BIOVP), mean plant height (Hmean), 75 percentile plant height (H75) and laser penetration index (LPI), and six vegetation indices, i.e., NDVI, SAVI, MCARI, TVI, NDRE and RVI were extracted. Then correlation analysis was performed of these parameters for screening suitable modeling parameters. With the aid of the multiple linear regression (MLR) and the partial least squares regression (PLSR), a LAI inversion model was constructed through merging the LiDAR point cloud structure parameters with vegetation indices as input parameters of the model. In applying the MLR method, the two vegetation indices, NDVI and SAVI, that are the most closely correlated with the field-observed LAI and the two point cloud structure parameters, H75 and BIOVP, that are the most closely correlated with the field-observed LAI, were used as input parameters of the model. While in adopting the PLSR method, the number of principal components in modeling was determined in the light of the result of the cross-validation. Before modeling, the experimental dataset had been randomly divided into a modeling set (n=32) and a validation set (n=16) at a ratio of 7:3 in all treatments. A LAI inversion model was built up based on the modeling dataset and then the validation dataset was used to evaluate effect of the model. Meanwhile, in order to determine whether the inversion with the LiDAR point cloud data merged with the multispectral data was better than that based on multispectral data alone, LAI inversion models were constructed using the same modeling method with vegetation indices as input parameters of the model only.[Result] The evaluation of the model using the coefficient of determination (R2) and the root mean square error (RMSE) shows that the inversion model using the LiDAR point cloud data merged with the multispectral data well reflect the LAI in winter wheat, with R2 of the modeling set being all > 0.900 and RMSE being < 0.400 and R2 of the validation set being all > 0.800, and RMSE being < 0.500. In addition, no matter whether using MLR or PLSR, the models with the LiDAR point cloud data and vegetation indices (MLR:R2=0.901, RMSE=0.480; PLSR:R2=0.909, RMSE=0.445 (n=16)) are all superior to the models using vegetation indices only (MLR:R2=0.897, RMSE=0.492; PLSR:R2=0.892, RMSE=0.486 (n=16)).[Conclusion] In conclusion, although the LAI data in this research were too scattered, leading to insignificant difference between models in comparison, it could still be seen that the addition of UAV LiDAR data could make up for the defect of using the multispectral data alone that insufficient information could be extracted along the vertical direction of the crop, and improve accuracy of the inversion of LAI in winter wheat. Therefore, the model with UAV LiDAR data merged with multispectral data is a superior means for inversion of LAI in winter wheat and even other crops smaller in plant type.

    参考文献
    [1] Yang G J, Liu J G, Zhao C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping:Current status and perspectives[J]. Frontiers in Plant Science, 2017, 8:1111.
    [2] Chen J M, Black T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell & Environment, 1992, 15(4):421-429.
    [3] Qiu R C, Wei S, Zhang M, et al. Study on the correlation between nitrogen, phosphorus, potassium and pH in five crop garden economic crops[J]. Agricultural Science and Engineering in China, 2019, 31(1):23-36, 55.[仇瑞承, 魏爽, 张漫, 等. 作物表型组学测量方法综述[J]. 中国农业文摘-农业工程, 2019, 31(1):23-36, 55.]
    [4] Gu Z J, Liu Y M, Lu J Y. Accuracy analysis of vegetation leaf area index(LAI) derivation from remote sensing data at different radiometric correction levels[J]. Acta Pedologica Sinica, 2010, 47(6):1067-1074.[顾祝军, 刘咏梅, 陆俊英. 用多辐射校正水平遥感数据提取植被叶面积指数的精度分析[J]. 土壤学报, 2010, 47(6):1067-1074.]
    [5] Hu G Y, Li S D, Yang R H. Comparison of three regression models for remote sensing estimation of leaf area index[J]. Science of Surveying and Mapping, 2018, 43(10):46-50, 66.[胡古月, 李少达, 杨容浩. 叶面积指数遥感估算的三种回归模型分析[J]. 测绘科学, 2018, 43(10):46-50, 66.]
    [6] Jin W, Ge H L, Du H Q, et al. A review on unmanned aerial vehicle remote sensing and its application[J]. Remote Sensing Information, 2009, 24(1):88-92.[金伟, 葛宏立, 杜华强, 等. 无人机遥感发展与应用概况[J]. 遥感信息, 2009, 24(1):88-92.]
    [7] Ji J C, Zhao Y, Zou X J, et al. Advancement in application of UAV remote sensing to monitoring of farmlands[J]. Acta Pedologica Sinica, 2019, 56(4):773-784.[纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019, 56(4):773-784.]
    [8] Potgieter A B, George-Jaeggli B, Chapman S C, et al. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of Sorghum breeding lines[J]. Frontiers in Plant Science, 2017, 8:1532.
    [9] Gao L, Yang G J, Wang B S, et al. Soybean leaf area index retrieval with UAV(unmanned aerial vehicle) remote sensing imagery[J]. Chinese Journal of Eco-Agriculture, 2015, 23(7):868-876.[高林, 杨贵军, 王宝山, 等. 基于无人机遥感影像的大豆叶面积指数反演研究[J]. 中国生态农业学报, 2015, 23(7):868-876.]
    [10] Sun S R, Zhao Y L, Wang Y J, et al. Leaf area index inversion of winter wheat based on multispectral remote sensing of UAV[J]. Journal of China Agricultural University, 2019, 24(11):51-58[孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报, 2019, 24(11):51-58.]
    [11] Zhao J, Huang W J, Zhang Y H, et al. Inversion of leaf area index during different growth stages in winter wheat[J]. Spectroscopy and Spectral Analysis, 2013, 33(9):2546-2552.[赵娟, 黄文江, 张耀鸿, 等. 冬小麦不同生育时期叶面积指数反演方法[J]. 光谱学与光谱分析, 2013, 33(9):2546-2552.]
    [12] Luo S Z, Chen J M, Wang C, et al. Comparative performances of airborne LiDAR height and intensity data for leaf area index estimation[J]. IEEE Journal of selected topics in Applied Earth Observations and Remote Sensing, 2018, 11(1):300-310.
    [13] Liu C, Yang G J, Li Z H, et al. Biomass estimation in winter wheat by UAV spectral information and texture information fusion[J]. Scientia Agricultura Sinica, 2018, 51(16):3060-3073[刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测[J]. 中国农业科学, 2018, 51(16):3060-3073.]
    [14] Nie S, Wang C, Dong P L, et al. Estimating leaf area index of maize using airborne discrete-return LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7):3259-3266.
    [15] Lu L, Zheng G, Ma L X. Combining point cloud slicing and terrestrial laser scanning data to retrieve an effective leaf area index[J]. Journal of Remote Sensing, 2018, 22(3):432-449.[路璐, 郑光, 马利霞. 激光雷达和点云切片算法结合的森林有效叶面积指数估算[J]. 遥感学报, 2018, 22(3):432-449.]
    [16] Tang X G. Estimation of forest aboveground biomass by integrationg ICESat/GLAS waveform and TM data[D]. Changchun:Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. 2013.[汤旭光. 基于激光雷达与多光谱遥感数据的森林地上生物量反演研究[D]. 长春:中国科学院东北地理与农业生态研究所, 2013.]
    [17] Chen H. LAI inversion method for crop based on LiDAR and multispectral remote sensing[D]. Shihezi, Xinjiang:Shihezi University, 2018.[陈洪. 基于机载LiDAR和多光谱遥感的作物LAI反演方法研究[D].石河子:新疆石河子大学, 2018.
    [18] Su W, Zhan J G, Zhang M Z, et al. Estimation method of crop leaf area index based on airborne LiDAR data[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(3):272-277.[苏伟, 展郡鸽, 张明政, 等. 基于机载LiDAR数据的农作物叶面积指数估算方法研究[J]. 农业机械学报, 2016, 47(3):272-277.]
    [19] Zhu Y H, Zhao C J, Yang H, et al. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data[J]. PeerJ, 2019, 7:e7593.
    [20] Huang J L. LiDAR' data processing based on TerraScan[J]. Bulletin of Surveying and Mapping, 2007(10):13-16.[黄金浪. 基于TerraScan的LiDAR数据处理[J]. 测绘通报, 2007(10):13-16.]
    [21] Ning Y F, Wu X T, Zhang H T, et al. Research on filtering LiDAR point cloud data based on virtual triangle nets and slope filtering[J]. Chinese Journal of Engineering Geophysics, 2012, 9(5):624-627.[宁亚飞, 吴笑天, 张海涛, 等. 基于虚拟三角网与坡度滤波的LiDAR点云数据滤波方法的研究[J]. 工程地球物理学报, 2012, 9(5):624-627.]
    [22] Wang A. Extraction of growth parameters of winter wheat based on Terrestrial LiDAR data[D]. Nanjing:Nanjing University, 2013.[王安. 基于地面LiDAR的冬小麦生长参数提取研究[D]. 南京:南京大学, 2013.]
    [23] Han L, Yang G J, Dai H Y, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data[J]. Plant Methods, 2019, 15:10.
    [24] Rouse J W J, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great Plains with ERTS[EB/OL]. 1974.
    [25] Huete A R. A soil-adjusted vegetation index(SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309.
    [26] Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2):229-239.
    [27] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2):156-172.
    [28] Barnes E M, Clarke T R, Richards S E, et al. Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data[EB/OL]. 2000.
    [29] Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of productivity of the shortgrass prairie[EB/OL]. 1972.
    [30] Geladi P, Kowalski B R. Partial least-squares regression:A tutorial[J]. Analytica Chimica Acta, 1986, 185:1-17.
    [31] Qi C, Fang Q L. Partial least squares modelling with R software and empirical analysis[J]. Mathematical Theory and Applications, 2013, 33(2):103-111.[齐琛, 方秋莲. 偏最小二乘建模在R软件中的实现及实证分析[J]. 数学理论与应用, 2013, 33(2):103-111.]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛玉洁,李晓鹏,张佳宝,马东豪,纪景纯,宣可凡,蒋一飞,汪春芬,邓皓东,刘建立.融合无人机载激光雷达与多光谱遥感数据的冬小麦叶面积指数反演[J].土壤学报,2022,59(1):161-171. DOI:10.11766/trxb202007130239 NIU Yujie, LI Xiaopeng, ZHANG Jiabao, MA Donghao, JI Jingchun, XUAN Kefan, JIANG Yifei, WANG Chunfen, DENG Haodong, LIU Jianli. Inversion of Leaf Area Index in Winter Wheat by Merging UAV LiDAR with Multispectral Remote Sensing Data[J]. Acta Pedologica Sinica,2022,59(1):161-171.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-13
  • 最后修改日期:2020-11-02
  • 录用日期:2020-11-12
  • 在线发布日期: 2020-12-10
  • 出版日期: 2022-01-11
文章二维码