古日乃湖盆沉积物发育土壤盐分与碳酸钙积累机制
作者:
中图分类号:

151.3

基金项目:

内江师范学院科研启动费项目(18B10)和第二次青藏高原综合科学考察研究项目(2019QZKK0306)资助


Characteristics and Mechanisms of the Accumulation of Salts and Calcium Carbonate in Sediment-derived Soils of the Gurinai Playa
Author:
Fund Project:

Neijiang Normal University Research Start-Up Funds(18B10) and China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    干旱区湖泊是维持生态脆弱区环境平衡的重要载体,随着环境变化和人类对水土资源的不合理利用,我国干旱区湖泊日渐萎缩、干涸直至消失。湖泊干涸过程中,地下水位持续下降,风积物不断加积,土壤演化过程随之发生变化,但关于湖泊沉积物发育土壤演化特征的研究十分匮乏。本研究结合土壤发生学和地球化学方法分析了古日乃湖盆沉积物发育土壤的盐分与碳酸钙积累特征与机制。结果表明:盐分积累是古日乃湖盆土壤形成的主要特征,盐化土壤表层水溶性盐含量、Na+浓度和钠吸附比分别为13.15~650.50 g·kg-1、186.9~12 114.7 mmol·L-1、22.3~890.5(mmol·L-11/2,土壤具有高含盐量、高Na+浓度与高钠吸附比,表现出强度盐化特征。古日乃湖盆干涸,土壤积盐过程由现代盐化向残积盐化演化,盐分类型由氯化物型、氯化物-硫酸盐型向硫酸盐-氯化物型、硫酸盐型转变。借助于与Ca地球化学行为相似的Sr同位素组成分析,表明土壤碳酸钙以次生碳酸钙为主,其占比超过碳酸钙总量的80%;土壤碳酸钙主要来源于母质和地下水,地下水持续供给Ca2+是碳酸钙强度积累形成钙磐的基础。古日乃湖盆土壤盐分与碳酸钙积累特征可为评估环境变化背景下土壤的形成与演变,并为预测我国内陆河尾闾湖地区土壤与生态环境变化提供科学依据。

    Abstract:

    Lakes in arid areas play an important role in keeping the balance between ecology and environment of the fragile ecosystems therein. Unfortunately, the lakes in the arid regions of China are shrinking, drying up or even disappearing, due to changing environment and human's abusive use of water and soil resources.[Objective] With the lake drying up, ground water table keeps on going down in depth and aeolian sediments build up, and consequently soil forming process begins to change. However, so far little has been reported in the literature about formation and development of sediment-derived soils in such an environment.[Method] In this study, both pedological and geochemical methods were applied to investigation of characteristics and mechanisms of salt and calcium carbonate accumulating in sediment-derived soils in the Gurinai Playa.[Result] Results show that the accumulation of various kinds of salts was the primary pedogenic process. Soil salt content, Na+ concentration and sodium absorption ratio in the surface soil layer of the sediment-derived soils in the Gurinai Playa reached 13.15~650.50 g·kg-1, 186.9~12 114.7 mmol·L-1 and 22.3~890.5(mmol·L-1)1/2, respectively, which suggest that the studied soils experienced strong salinization. In addition, with the Gurinai Playa drying up the accumulation of salts in the soils evolved from modern salinization to residual salinization, and soil salt composition gradually changed from Cl-, and Cl--SO42- types in the initial stage of the soil evolution to SO42--Cl-, and SO42- types in the more advanced stages. Given that Sr and Ca are quite similar in geochemical behavior, the analysis of composition of Sr isotopes demonstrates that secondary CaCO3 predominated in soil total CaCO3 accounting for over 80%. Moreover, soil CaCO3 in this area was primarily derived from calcareous sediments and groundwater. The continuous provision of Ca2+ by groundwater led to strong accumulation of CaCO3and formation of Calcicpan.[Conclusion] Interpretation of the accumulation of salts and CaCO3 in soils during the drying progress of the Gurinai Playa provides a scientific basis for evaluating soil formation and evolution in relation to environmental changes, and for predicting changes in soils and ecological environment of the terminal lake areas of inland rivers.

    参考文献
    [1] Pendleton R L,Jenny H. Factors of soil formation:A system of quantitative pedology[J]. Geographical Review,1945,35(2):336.
    [2] Pan Q M,Tian S L. Water resources of Heihe River Basin[M]. Zhengzhou:Yellow River Conservancy Press,2001.[潘启民,田水利. 黑河流域水资源[M]. 郑州:黄河水利出版社,2001.]
    [3] Cheng G D,Li X,Zhao W Z,et al. Integrated study of the water-ecosystem-economy in the Heihe River Basin[J]. National Science Review,2014,1(3):413-428.
    [4] Zhu G F,Su Y H,Huang C L,et al. Hydrogeochemical processes in the groundwater environment of Heihe River Basin,northwest China[J]. Environmental Earth Sciences,2010,60(1):139-153.
    [5] Wang G X,Cheng G D. Changes of hydrology and ecological environment during late 50 years in Heihe River Basin[J]. Journal of Desert Research,1998,18(3):233-238.[王根绪,程国栋. 近50a来黑河流域水文及生态环境的变化[J]. 中国沙漠,1998,18(3):233-238.]
    [6] Chen J,Li G J. Geochemical studies on the source region of Asian dust[J]. Science China Earth Sciences,2011,54(9):1279-1301.
    [7] Ma S H,Li Z L,Wang N A,et al. Mineralogical assemblages in surface sediments and its formation in the groundwater recharged lakes:A case study of lakes in the Badain Jaran Desert[J]. Journal of Lake Sciences,2015,27(4):727-734.[马素辉,李卓仑,王乃昂,等. 地下水补给型湖泊表层沉积物矿物组成及其形成机制——以巴丹吉林沙漠湖泊群为例[J]. 湖泊科学,2015,27(4):727-734.]
    [8] Briere P R. Playa,playa lake,sabkha:Proposed definitions for old terms[J]. Journal of Arid Environments,2000,45(1):1-7.
    [9] Wang X M,Hua T,Zhang C X,et al. Aeolian salts in Gobi deserts of the western region of Inner Mongolia:Gone with the dust aerosols[J]. Atmospheric Research,2012,118:1-9.
    [10] Shen H,Abuduwaili J,Samat A,et al. A review on the research of modern aeolian dust in Central Asia[J]. Arabian Journal of Geosciences,2016,9(13):1-16.
    [11] Lal R. Sequestering carbon in soils of arid ecosystems[J]. Land Degradation & Development,2009,20(4):441-454.
    [12] Stone R. Ecosystems:Have desert researchers discovered a hidden loop in the carbon cycle?[J]. Science,2008,320(5882):1409-1410.
    [13] Monger H C,Kraimer R A,Khresat S,et al. Sequestration of inorganic carbon in soil and groundwater[J]. Geology,2015,43(5):375-378.
    [14] Zamanian K,Pustovoytov K,Kuzyakov Y. Pedogenic carbonates:Forms and formation processes[J]. Earth-Science Reviews,2016,157:1-17.
    [15] Li Y,Wang Y G,Tang L S. The effort to re-activate the inorganic carbon in soil[J]. Acta Pedologica Sinica,2016,53(4):845-849.[李彦,王玉刚,唐立松. 重新被"激活"的土壤无机碳研究[J]. 土壤学报,2016,53(4):845-849.]
    [16] Gu W Z,Peters N E. Spatial variation in background groundwater geochemistry of the Gurinai Wetland,Gobi Desert,Inner Mongolia[EB/OL]. Models for assessing and monitoring groundwater quality. Proc. symposium,Boulder,1995,227:85-90.
    [17] Wu Y Q,Mu F Q,He Y X,et al. Analysis of the transformation path between stream flow and groundwater from Dingxin to Shaomaying in Hei River,Catchment West China[J]. Journal of Glaciology and Geocryology,2000,22(1):73-77.[仵彦卿,慕富强,贺益贤,等. 河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析[J]. 冰川冻土,2000,22(1):73-77.]
    [18] Yin D Q,Li X,Huang Y F,et al. Identifying vegetation dynamics and sensitivities in response to water resources management in the Heihe River Basin in China[J]. Advances in Meteorology,2015,2015:1-12.
    [19] Zhang G L,Gong Z T. Soil survey laboratory methods[M]. Beijing:Science Press,2012.[张甘霖,龚子同. 土壤调查实验室分析方法[M]. 北京:科学出版社,2012.]
    [20] Yang F,Huang L M,Yang R M,et al. Vertical distribution and storage of soil organic and inorganic carbon in a typical inland river basin,Northwest China[J]. Journal of Arid Land,2018,10(2):183-201.
    [21] Schaetzl R J. Lithologic discontinuities in some soils on drumlins:theory,detection,and application[J]. Soil Science,1998,163(7):570-590.
    [22] Sposito G,Mattigod S V. On the chemical foundation of the sodium adsorption ratio[J]. Soil Science Society of America Journal,1977,41(2):323-329.
    [23] Chen J,Qiu G,Yang J D. Sr isotopic composition of loess carbonate and identification of primary and secondary carbonates[J]. Progress in Natural Science:Materials International,1997,7(5):590-593.
    [24] Wang Z Q,Zhu S Q,Yu R P,et al. Salt-affected soils in China[M]. Beijing:Science Press,1993.[王遵亲,祝寿泉,俞仁培,等. 中国盐渍土[M]. 北京:科学出版社,1993.]
    [25] Cox C L,Jin L X,Ganjegunte G,et al. Soil quality changes due to flood irrigation in agricultural fields along the Rio Grande in western Texas[J]. Applied Geochemistry,2018,90:87-100.
    [26] Marion G M. Correlation between long-term pedogenic CaCO3 formation rate and modern precipitation in deserts of the American Southwest[J]. Quaternary Research,1989,32(3):291-295.
    [27] Yu T R,Chen Z C. Chemical processes in pedogenesis[M]. Beijing:Science Press,1990.[于天仁,陈志诚. 土壤发生中的化学过程[M]. 北京:科学出版社,1990.]
    [28] Gile L H,Peterson F F,Grossman R B. Morphological and genetic sequences of carbonate accumulation in desert soils[J]. Soil Science,1966,101(5):347-360.
    [29] Chen J S,Zhao X,Sheng X F,et al. Study on the formation mechanism of the lakes and mountains in the Badain Jaran Desert[J]. Chinese Science Bulletin,2006,51(23):2789-2796.[陈建生,赵霞,盛雪芬,等. 巴丹吉林沙漠湖泊群与沙山形成机理研究[J]. 科学通报,2006,51(23):2789-2796.]
    [30] Schlesinger W H,Marion G M,Fonteyn P J. Stable isotope ratios and the dynamics of caliche in desert soils[M]//Rundel P W,Ehleinger J R,Nagy K A. Stable Isotopes in Ecological Research. New York:Springer,1989:309-317.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨帆,杨飞,黄来明,杨仁敏,韩光中,张甘霖.古日乃湖盆沉积物发育土壤盐分与碳酸钙积累机制[J].土壤学报,2022,59(2):393-404. DOI:10.11766/trxb202007070373 YANG Fan, YANG Fei, HUANG Laiming, YANG Renmin, HAN Guangzhong, ZHANG Ganlin. Characteristics and Mechanisms of the Accumulation of Salts and Calcium Carbonate in Sediment-derived Soils of the Gurinai Playa[J]. Acta Pedologica Sinica,2022,59(2):393-404.

复制
分享
文章指标
  • 点击次数:701
  • 下载次数: 2115
  • HTML阅读次数: 1533
  • 引用次数: 0
历史
  • 收稿日期:2020-07-07
  • 最后修改日期:2020-11-02
  • 录用日期:2021-03-01
  • 在线发布日期: 2021-06-21
  • 出版日期: 2022-02-11
文章二维码