基于Gouy-Chapman理论估算碱金属离子在Cu2+-蒙脱石表面Hofmeister能
作者:
中图分类号:

S153.3

基金项目:

国家自然科学基金项目(41530855,41877026)和重庆市自然科学基金项目(cstc2019jcyj-msxmX0332)资助


Estimation of Hofmeister Energy of Alkali Metal Ions on Cu2+-Montmorillonite Surface Based on the Gouy-Chapman Theory
Author:
Fund Project:

National Natural Science Foundation of China (No.41530855 and 41877026) and the Natural Science Foundation of Chongqing in China (No. cstc2019jcyj-msxmX0332)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Hofmeister效应在离子交换吸附过程中具有重要的科学意义。本研究基于Gouy-Chapman理论研究三种碱金属阳离子(Na+、K+、Cs+)在Cu2+-蒙脱石饱和样表面吸附过程的Hofmeister效应,进一步计算了离子-表面Hofmeister能以及表观电荷系数。研究发现:(1)Na+、K+、Cs+在Cu2+-蒙脱石表面的吸附均表现为弱静电力作用下的一级动力学过程,平均吸附速率以及平衡吸附量均表现出明显的Hofmeister效应,呈现出Na+ < K+ < Cs+的趋势;(2)Hofmeister能随着电解质浓度的降低而增加,在Cs+-黏土矿物相互作用中,Hofmeister能为主要贡献者,在K+/Na+-黏土矿物相互作用中,经典库伦能为主要贡献者;(3)非经典极化作用显著增大了离子的表观电荷系数,Na+、K+、Cs+的表观电荷系数分别从标准的+1值增加为+1.14、+1.76和+2.78。本研究明确了Hofmeister效应主要来源于离子的非经典极化作用引起的离子与表面相互作用能的差异,为阐明土壤这一特殊体系的界面反应机制提供了新的思路。

    Abstract:

    [Objective] Hofmeister effects can be seen everywhere, and usually manifested as difference in behavior of covalent ions in solution. Hofmeister effects exist universally in physical, chemical and biological processes, playing an important role in interface interaction. Also, Hofmeister effects are of great scientific significance to ion exchange/adsorption process. The purpose of this paper is to compare Hofmeister effects on the adsorption processes of three kinds of alkali metal cations (Na+, K+, Cs+) on saturated surface of Cu2+montmorillonite and to analyze sources of the Hofmeister effects.[Method] An ion adsorption kinetics experiment was carried out using the constant current method to compare the three alkali metal cations (Na+, K+, Cs+) in adsorption on Cu2+-montmorillonite surface. The experiment was designed to have the temperature fixed at 298 K, and the binary mixed electrolyte solution composed of XNO3 + LiNO3, where X stands for Cs, Na or K. The two electrolytes in the mixed solution was equal in concentration, 0.0001, 0.001 or 0.01 mol·L-1. In the end, ion-surface Hofmeister energies and apparent charge coefficients were worked out in line with the Gouy-Chapman theory.[Result] (1) The adsorption of Na+, K+ and Cs+ on the surface of Cu2+-montmontmoillonite showed a first-order kinetic process under a weak electrostatic force, with average adsorption rate and equilibrium adsorption demonstrating obvious Hofmeister effects in an order of Na+ < K+ < Cs+. For example, when the electrolyte was 0.01 mol·L-1 in concentration, the average adsorption rate of Na+, K+ and Cs+ on the surface of Cu2+-montmorillonite reached 4.48, 8.68 and 11.74 mmol·kg-1·min-1 respectively, and the equilibrium adsorption did 129.17, 341.11 and 911.47 mmol·kg-1respectively in amount within 27 minutes. (2) Hofmeister energy increased with decreasing electrolyte concentration. On the surface of Cs+-clay mineral, Hofmeister energy was the main contributor of the interaction, while on the surface of K+/Na+-clay mineral, classical Coulomb energy was. When the electrolyte concentration was 0.0001, 0.001 and 0.01 mol·L-1, the ratio of wHi (0)/wTi (0) of Cs+ was 67.00, 65.71 and 58.00%; that of K+ 44.24, 43.36 and 42.19%; and that of Na+17.88, 9.29 and 8.82%, respectively. (3) Effective charge coefficient decreased with increasing electrolyte concentration. This is because increased electrolyte concentration compresses the electric double layer, thus enhancing its capability of shielding the electric field, and leading to decrease of the electric field in the diffusion layer in intensity, which eventually weakens polarization of the adsorbed ions and reduces effective charge coefficients. The non-classical polarization significantly amplified apparent charge coefficient of the ions. The apparent charge coefficients of Cs+, K+, Na+ worked out in this experiment under the condition of the electrolyte concentration being 0.0001, 0.001, 0.01 mol·L-1 followed the sequence of Cs+ > K+ > Na+ in Hofmeister effect. Apparent charge coefficient of Na+, K+ and Cs+ increased from the standard +1 value to +1.14, +1.76 and +2.78, respectively.[Conclusion] This study clearly demonstrates that the Hofmeister effects originate mainly from the difference in ion-surface interaction energy between the ions caused by their non-classical polarization. And all the findings in this study provides a new idea for elucidating the mechanisms of interface reactions in such a unique system as soil.

    参考文献
    [1] Zhang Y,Cremer P S. Interactions between macromolecules and ions:The Hofmeister series[J]. Current Opinion in Chemical Biology,2006,10(6):658-663.
    [2] Okur H I,Hladílková J,Rembert K B,et al. Beyond the Hofmeister series:Ion-specific effects on proteins and their biological functions[J]. Journal of Physical Chemistry B,2017,121(9):1997-2014.
    [3] Fox J M,Kang K,Sherman W,et al. Interactions between Hofmeister anions and the binding pocket of a protein[J]. Journal of the American Chemical Society,2015,137(11):3859-3866.
    [4] Hyde A M,Zultanski S L,Waldman J H,et al. General principles and strategies for salting-out informed by the Hofmeister series[J]. Organic Process Research & Development,2017,21(9):1355-1370.
    [5] Metrick M A,Ferreira N D C,Saijo E,et al. Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(46):23029-23039.
    [6] Oncsik T,Trefalt G,Borkovec M,et al. Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series[J]. Langmuir,2015,31(13):3799-3807.
    [7] Schwierz N,Horinek D,Sivan U,et al. Reversed Hofmeister series-the rule rather than the exception[J]. Current Opinion in Colloid and Interface Science,2016,23:10-18.
    [8] Xia T J,Qi Y,Liu J,et al. Cation-inhibited transport of graphene oxide nanomaterials in saturated porous media:The Hofmeister effects[J]. Environmental Science & Technology,2017,51(2):828-837.
    [9] Luo Y X,Li H,Gao X D,et al. Description of colloidal particles aggregation in the presence of Hofmeister effects:On the relationship between ion adsorption energy and particle aggregation activation energy[J]. Physical Chemistry Chemical Physics,2018,20(35):22831-22840.
    [10] Xu C Y,Li H,Hu F N,et al. Non-classical polarization of cations increases the stability of clay aggregates:Specific ion effects on the stability of aggregates[J]. European Journal of Soil Science,2015,66(3):615-623.
    [11] Zhang R H,Tian R,Zhu L H,et al. Water infiltration under different CaCl2 concentrations for soil with mainly permanent charges[J]. Soil and Tillage Research,2019,195:104416.
    [12] Du W,Liu X M,Li R,et al. Theory to describe incomplete ion exchange in charged heterogeneous systems[J]. Journal of Soils and Sediments,2019,19(4):1839-1849.
    [13] Wu Y B,Liu X M,Li R,et al. Hofmeister effect in eon adsorption kinetics on surface of yellow earth particles[J]. Acta Pedologica Sinica. 2018,55(6):1450-1459.[吴英博,刘新敏,李睿,等. 黄壤颗粒表面离子吸附动力学中的离子特异性效应[J]. 土壤学报,2018,55(6):1450-1459.]
    [14] Zhang Y J,Cremer P S. The inverse and direct Hofmeister series for lysozyme[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(36):15249-15253.
    [15] Parsons D F,Boström M,Nostro P L,et al. Hofmeister effects:interplay of hydration,nonelectrostatic potentials,and ion size[J]. Physical Chemistry Chemical Physics,2011,13(27):12352-12367.
    [16] Teppen B J,Miller D M. Hydration energy determines isovalent cation exchange selectivity by clay minerals[J]. Soil Science Society of America Journal,2006,70(1):31-40.
    [17] Moreira L A,Boström M,Ninham B W,et al. Hofmeister effects:Why protein charge,pH titration and protein precipitation depend on the choice of background salt solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,282:457-463.
    [18] Boström M,Williams D,Ninham B. Specific ion effects:Why DLVO theory fails for biology and colloid systems[J]. Physical Review Letters,2001,87(16):168103.
    [19] Liu X M,Li H,Li R,et al. Strong non-classical induction forces in ion-surface interactions:General origin of Hofmeister effects[J]. Scientific Reports,2015,4:5047. https://doi.org/10.1038/srep05047.
    [20] Tian R,Yang G,Li H,et al. Activation energies of colloidal particle aggregation:Towards a quantitative characterization of specific ion effects[J]. Physical Chemistry Chemical Physics,2014,16(19):8828-8836.
    [21] Liu X M,Li H,Li R,et al. A new model for cation exchange equilibrium considering the electrostatic field of charged particles[J]. Journal of Soils and Sediments,2012,12(7):1019-1029.
    [22] Du W,Li R,Liu X M,et al. Estimating Hofmeister energy in ion-clay mineral interactions from the Gouy-Chapman theory[J]. Applied Clay Science,2017,146:122-130.
    [23] Pan X L,Liu X M,Li H,et al. Specificity of alkali metal ions absorbed on surface of montmorillonite-Cu2+[J]. Acta Pedologica Sinica,2020,57(2):370-380.[潘小丽,刘新敏,李航,等. 碱金属离子在蒙脱石-Cu2+表面吸附的离子特异性[J]. 土壤学报,2020,57(2):370-380.]
    [24] Li H,Wu L S,Zhu H L,et al. Ion diffusion in the time-dependent potential of the dynamic electric double layer[J]. Journal of Physical Chemistry C,2009,113(30):13241̵#8212;13248.
    [25] Li H,Li R,Zhu H L,et al. Influence of electrostatic field from soil particle surfaces on ion adsorption-diffusion[J]. Soil Science Society of America Journal,2010,74(4):1129-1138.
    [26] Li H,Hou J,Liu X M,et al. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment[J]. Soil Science Society of America Journal,2011,75(6):2128-2135.
    [27] Li R,Li H,Zhu H L,et al. Kinetics of cation adsorption on charged soil mineral as strong electrostatic force presence or absence[J]. Journal of Soils and Sediments,2011,11(1):53-61.
    [28] Boström M,Ninham B. Dispersion self-free energies and interaction free energies of finite-sized ions in salt solutions[J]. Langmuir,2004,20(18):7569-7574.
    [29] Ao Z,Liu G M,Zhang G Z. Ion specificity at low salt concentrations investigated with total internal reflection microscopy[J]. Journal of Physical Chemistry C,2011,115(5):2284-2289.
    [30] Nelson N,Schwartz D K. Specific ion(Hofmeister)effects on adsorption,desorption,and diffusion at the solid-aqueous interface[J]. Journal of Physical Chemistry Letters,2013,4(23):4064-4068.
    [31] Parsons D F. The impact of nonelectrostatic physisorption of ions on free energies and forces between redox electrodes:Ion-specific repulsive peaks[J]. Electrochimica Acta,2016,189:137-146.
    [32] Kunz W,Lo Nostro P,Ninham B W. The present state of affairs with Hofmeister effects[J]. Current Opinion in Colloid and Interface Science,2004,9(1):1-18.
    [33] Sposito G. The surface chemistry of soils[M]. Oxford University Press,1984.
    [34] Li Q Y,Tang Y,He X H,et al. Approach to theoretical estimation of the activation energy of particle aggregation taking ionic nonclassic polarization into account[J]. AIP Advances,2015,5(10):107218. https://doi.org/10.1063/1.4934594.
    [35] Liu X M,Li H,Du W,et al. Hofmeister effects on cation exchange equilibrium:Quantification of ion exchange selectivity[J]. Journal of Physical Chemistry C,2013,117(12):6245-6251.
    [36] Li R,Li H. Comparison study between Mg2+-K+ and Ca2+-K+ exchange kinetics under electric fields at the solid-liquid interface of soil[J]. Acta Physico-Chimica Sinica,2010,26(3):552-560.[李睿,李航. 土壤颗粒表面电场作用下固-液界面Mg2+-K+与Ca2+-K+交换动力学的比较研究[J]. 物理化学学报,2010,26(3):552-560.]
    [37] Goldberg S,Suarez D L. Influence of soil solution cation composition on boron adsorption by soils[J]. Soil Science,2011,176(2):80-83.
    [38] Li X H,Xu H X,Gao B,et al. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media:Effect of ion type and concentration[J]. Environmental Pollution,2019,254:112940.
    [39] Tan L Q,Tan X L,Ren X M,et al. Influence of pH,soil humic acid,ionic strength and temperature on sorption of U(VI)onto attapulgite[J]. Journal of Radioanalytical & Nuclear Chemistry,2018,316(3):981-991.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱晔玮,刘新敏,李睿,李航.基于Gouy-Chapman理论估算碱金属离子在Cu2+-蒙脱石表面Hofmeister能[J].土壤学报,2022,59(2):498-508. DOI:10.11766/trxb202007090378 ZHU Yewei, LIU Xinmin, LI Rui, LI Hang. Estimation of Hofmeister Energy of Alkali Metal Ions on Cu2+-Montmorillonite Surface Based on the Gouy-Chapman Theory[J]. Acta Pedologica Sinica,2022,59(2):498-508.

复制
分享
文章指标
  • 点击次数:585
  • 下载次数: 2675
  • HTML阅读次数: 913
  • 引用次数: 0
历史
  • 收稿日期:2020-07-09
  • 最后修改日期:2020-08-26
  • 录用日期:2020-10-21
  • 在线发布日期: 2020-12-22
  • 出版日期: 2022-02-11
文章二维码