强还原土壤处理对再植龙牙百合生长不利因子的消减作用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国农业科学院科技创新工程(ASTIP-IBFC07)、国家重点研发计划项目(2017YFD0200600)和寿光设施农业中心开放性科研项目(2018SG-Y-04,2018SG-Y-06)资助


Effect of Reductive Soil Disinfestation Mitigating Adverse Factors for Growth of Replanted Longya Lily (Lilium brownii var. viridulum)
Author:
Affiliation:

Fund Project:

The Agricultural Science and Technology Innovation Program (No. ASTIP-IBFC07), the China Postdoctoral Science Foundation (Nos. 2018M630573, 2019T120442) and the Startup Funds of Nanjing Normal University (No. 184080H202B136)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    病害和草害是再植龙牙百合生长的两大关键制约因素。以强还原土壤处理(Reductive soil disinfestation,RSD)为技术手段,以湖南省栽培过龙牙百合的土壤为研究对象,通过设置液体有机物料RSD处理(6 t·hm-2,MO)、固体有机物料RSD处理(15 t·hm-2,SB)和不做任何土壤处理的对照(CK),研究该技术手段对龙牙百合栽培土壤中土传病原菌和杂草种子库的影响。结果表明,与CK对照相比,RSD处理均能有效杀灭土壤中的尖孢镰刀菌、腐皮镰刀菌和立枯丝核菌等病原真菌,显著降低镰刀菌属在真菌类群中的占比,其杀菌率高达98.8%。同时,RSD处理还能有效抑制土壤杂草种子库中大部分杂草的萌发,显著降低田间杂草的密度和生物量,其对杂草数量和干质量的抑制率分别为94.1%~96.0%和71.0%~94.7%,且MO处理对杂草的防除效果优于SB处理。此外,RSD处理还能显著改变田间杂草的群落结构,并降低其多样性、丰富度和优势度。因此,强还原土壤处理能够显著消减土传病原菌、杂草等再植龙牙百合生长不利因子,是一种具有同时降低田间病害和草害发生潜力的农业措施,且可以为减少农药施用量、实现农业绿色可持续发展提供一定的理论依据和技术支持。

    Abstract:

    [Objective] Longya Lily (Lilium brownii var. viridulum) is a perennial herb aboriginal of Longhui County, Shaoyang City, Hunan Province, with edible and medicinal values. It is of great significance to sustain cultivation of the crop for farmers' income and local economic development. However, soil borne diseases and weeds are the two key adverse factors affecting growth of replanted Longya Lily, and hence threatening stability and development of the local Lily industry. Reductive soil disinfestation (RSD) refers to a technology of pre-planting soil treatment designed to effectively eliminate soil-borne pathogens, degrade allelochemicals, and improve soil physicochemical properties, etc., but how much RSD could control weeds and soil weed seed bank is still unclear. Therefore, this study was oriented to explore effects of RSD on soil borne pathogens and weed seed bank in Longya Lily fields.[Method] A field experiment, designed to have three treatments, i.e. CK (control without soil treatment); MO[RSD incorporated with 6 t·hm-2liquid organic material (C/N 21)]; SB[RSD incorporated with 15 t·hm-2 solid organic material (C/N 94)], was conducted in a field planted with Longya Lily for one year. Real-time PCR was used to determine populations of the bacteria, fungi and soil-borne pathogens in the soil. Species of the weeds in the field were identified and density and biomass of the weeds were recorded.[Result] Results show that RSD effectively suppressed Fusarium oxysporum, Fusarium solani and Rhizoctonia solani, and significantly lowered the proportion of genus Fusarium in the fungal community as compared to CK, with disinfestation efficacy up to 98.8%. Furthermore, RSD also effectively inhibited germination of most of the weeds in the soil weed seed bank, and significantly reduced density and biomass of the weeds in the field, by 94.1%~96.0% and 71.0%~94.7%, respectively. And treatment MO was higher than treatment SB in weed control effect. In addition, RSD significantly changed structure and reduced diversity, richness and dominance of the weed community.[Conclusion] Therefore, it can be concluded that RSD can significantly reduce soil borne pathogens, weeds and other adverse factors in the field of replanted Longya Lily. It is a promising agricultural measure with the potential to reduce the occurrence of both soil borne diseases and weed infestation. The findings in this study could provide a theoretical basis and certain technical support for reducing the use of pesticide and realizing sustainable development of the green agriculture.

    参考文献
    相似文献
    引证文献
引用本文

夏青,罗晨,曾粮斌,张金波,蔡祖聪,赵军.强还原土壤处理对再植龙牙百合生长不利因子的消减作用[J].土壤学报,2022,59(1):183-193. DOI:10.11766/trxb202007220410 XIA Qing, LUO Chen, ZENG Liangbin, ZHANG Jinbo, CAI Zucong, ZHAO Jun. Effect of Reductive Soil Disinfestation Mitigating Adverse Factors for Growth of Replanted Longya Lily (Lilium brownii var. viridulum)[J]. Acta Pedologica Sinica,2022,59(1):183-193.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-22
  • 最后修改日期:2020-10-14
  • 录用日期:2020-11-20
  • 在线发布日期: 2020-12-22
  • 出版日期: 2022-01-11