种植模式影响施肥导致的土壤反硝化势变化及其微生物机制
作者:
中图分类号:

X17

基金项目:

国家自然科学基金项目(41977102)和江西省自然科学基金项目(20192BAB203022)资助


Effect of Planting System on Fertilization-induced Variation of Soil Denitrification Potential and Its Microbial Mechanism
Author:
Fund Project:

Funding for the work was provided by the National Natural Science Foundation of China (41977102) and Natural Science Foundation of Jiangxi Province (20192BAB203022)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水田土壤反硝化势(Soil denitrification potential,SDP)往往高于旱地土壤,但施肥对水田和旱地SDP的影响差异往往基于不同气候条件下的不同土壤类型获取,其准确性可能受外界条件干扰。以发育自同一母质的相邻水田和旱地长期试验为平台,比较不同施肥模式下水田和旱地SDP的变化及其与功能基因(narGnirSnirKnosZ)丰度及nirS-型反硝化细菌群落组成之间关系的异同。结果表明,在水田中,与常规氮磷钾平衡施肥(NPK处理)相比,缺钾(NP处理)和缺氮(PK处理)的SDP分别提高33.01%和23.57%,而缺磷(NK处理)则降低35.76%,其中NP和NK处理的SDP变化与nirS基因丰度显著相关。这可能与施肥导致的土壤有效磷和氮/磷变化有关,而PK处理的SDP变化与nirS-型反硝化细菌Azospira sp.NC3H-14丰度的显著升高有关。在旱地中,与NPK处理相比,NP、NK和缺氮钾的P处理SDP分别提高13.94%、26.51%和25.41%,NK和P处理的SDP变化既与narG基因丰度显著增加相关,也与不同的nirS-型反硝化细菌丰度增加有关,其中NK处理与Azospira sp.NC3H-14和Ideonella sp.NC3L-43b丰度增加有关,P处理与Azospira sp.NC3H-14、Rhodanobacter sp.D206a和Rubrivivax gelatinosus丰度增加有关;而土壤无定形氧化铁含量的变化可能是影响narG基因丰度的主要因素。直接比较相同环境条件下的水田和旱地结果可以发现,水田中施肥导致的SDP变化主要与反硝化微生物群落组成变化有关,而旱地中则可能同时受制于功能基因和反硝化微生物群落组成的变化。

    Abstract:

    [Objective] Soil denitrification potential (SDP) is generally higher in paddy field than in upland field. However, as the effect of fertilization on SDP in paddy field and upland field varies with climatic and soil type, accuracy of its assessment is often affected by external conditions.[Method] In this study, two adjacent fields, one paddy field and one upland field, both derived from the same parent material of Quaternary red clay, in a long-term field experiment were selected for exploration of effect of fertilization regime on SDP and its association with abundances of functional genes (narG, nirS, nirK, and nosZ) and community composition of nirS-type denitrifiers with the aid of in-lab incubation, real-time quantitative polymerase chain reaction (qPCR), and high-throughput sequencing technology.[Result] In the paddy field, compared with Treatment NPK, Treatment NP and PK was significantly or 33.01% and 23.57%, respectively, higher in SDP, while Treatment NK was 35.76% lower in SDP. The effects of Treatments NP and NK were related to the abundance of nirS gene, and the changes in content of soil available P (AP) and N:P ratio, while that of Treatment PK was associated with the community composition of nirS-type denitrifiers (Azospira sp. NC3H-14). In the upland field, compared with Treatment NPK, Treatment NP, NK and P was 13.94%, 26.51%, and 25.41%, respectively, higher in SDP. The effects of Treatments NK and P were significantly related to the abundance of narG gene and of nirS-type denitrifiers (Azospira sp. NC3H-14 and Ideonella sp. NC3L-43b for NK treatment; Azospira sp. NC3H-14, Rhodanobacter sp. D206a, Rubrivivax gelatinosus for P treatment). The content of amorphous iron oxide (Feo) was probably the main factor affecting the abundance of narG gene.[Conclusion] The above listed findings indicate that planting system affects the effect of fertilization on SDP. The variation of SDP in paddy field is mainly attributed to nirS-type denitrifiers, while that in upland field primarily to the abundance of functional gene and the community compostion of nirS-type denitrifiers.

    参考文献
    [1] Hu H W, Chen D L, He J Z. Microbial regulation of terrestrial nitrous oxide formation:Understanding the biological pathways for prediction of emission rates[J]. FEMS Microbiology Reviews, 2015, 39(5):729-749.
    [2] Wrage N, Velthof G L, van Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 2001, 33(12/13):1723-1732.
    [3] Philippot L, Hallin S, Schloter M. Ecology of denitrifying prokaryotes in agricultural soil[J]. Advances in Agronomy, 2007, 96:249-305.
    [4] Sun R B, Guo X S, Wang D Z, et al. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle[J]. Applied Soil Ecology, 2015, 95:171-178.
    [5] Wolsing M, Priemé A. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments[J]. FEMS Microbiology Ecology, 2004, 48(2):261-271.
    [6] Chen Z, Hou H J, Zheng Y, et al. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5):1064-1072.
    [7] Buermans H P J, den Dunnen J T. Next generation sequencing technology:Advances and applications[J]. Biochimica et Biophysica Acta:Molecular Basis of Disease, 2014, 1842(10):1932-1941.
    [8] Cutruzzola F, Brown K, Wilson E K, et al. The nitrite reductase from Pseudomonas aeruginosa:Essential role of two active-site histidines in the catalytic and structural properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5):2232-2237.
    [9] Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4):533-616.
    [10] Throbäck I N, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3):401-417.
    [11] Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes(nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998, 64(10):3769-3775.
    [12] IPCC. Climate change 2014:Mitigation of climate change, summary for policymakers[M]//Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge:Cambridge University Press, 2014.
    [13] Wang H C, Liu Z D, Ma L, et al. Denitrification potential of paddy and upland soils derived from the same parent material respond differently to long-term fertilization[J]. Frontiers in Environmental Science, 2020, 8:105. https://doi.org/10.3389/fenvs.2020.00105.
    [14] Xu Y B, Cai Z C. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use[J]. European Journal of Soil Science, 2007, 58(6):1293-1303.
    [15] Wang L, Sheng R, Yang H C, et al. Stimulatory effect of exogenous nitrate on soil denitrifiers and denitrifying activities in submerged paddy soil[J]. Geoderma, 2017, 286:64-72.
    [16] Wang J, Cheng Y, Cai Z C, et al. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil:A review[J]. Acta Pedologica Sinica, 2016, 53(2):292-304.[王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响[J]. 土壤学报, 2016, 53(2):292-304.]
    [17] He M Z, Dijkstra F A. Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil[J]. Soil Biology & Biochemistry, 2015, 82:99-106.
    [18] Sheng R, Meng D L, Wu M N, et al. Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers[J]. Journal of Soils and Sediments, 2013, 13(7):1246-1256.
    [19] Wei X M, Hu Y J, Peng P Q, et al. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil[J]. Biology and Fertility of Soils, 2017, 53(7):767-776.
    [20] Mori T, Ohta S, Ishizuka S, et al. Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation[J]. Soil Science and Plant Nutrition, 2010, 56(5):782-788.
    [21] Zhang Y, Song C L, Ji L, et al. Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes[J]. Science of the Total Environment, 2018, 627:1294-1302.
    [22] Mo X H, Ma W, Shi R J, et al. Diversity of nirS-type denitrifying bacteria under different nitrogen fertilizer management in wheat soil[J]. Acta Microbiologica Sinica, 2009, 49(9):1203-1208.[莫旭华, 麻威, 史荣久, 等. 氮肥对小麦田土壤nirS型反硝化细菌多样性的影响[J]. 微生物学报, 2009, 49(9):1203-1208.]
    [23] Wang J, Yan X. Denitrification in upland of China:Magnitude and influencing factors[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(12):3060-3071.
    [24] Tian Y Y. Effects of long-term potassium deficiency on tomato root exudates and rhizosphere microecology[D]. Shenyang:Shenyang Agricultural University, 2018.[田悦悦. 长期缺钾对设施番茄根系分泌物及根际微生态的影响[D]. 沈阳:沈阳农业大学, 2018.]
    [25] Wang Y Y, Lu S E, Chen X M, et al. Analyzing the nitrate reductase gene(nirK) community in the peat soil of the Zoige Wetland of the Tibetan Plateau[J]. Acta Ecologica Sinica, 2017, 37(19):6607-6615.[王蓥燕, 卢圣鄂, 陈小敏, 等. 若尔盖高原湿地泥炭沼泽土亚硝酸盐还原酶(nirK)反硝化细菌群落结构分析[J]. 生态学报, 2017, 37(19):6607-6615.]
    [26] Xue K, Wu L Y, Deng Y, et al. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands[J]. Applied and Environmental Microbiology, 2013, 79(4):1284-1292.
    [27] Zulkarnaen N, Cheng Y, Zhang J B. Denitrification potential and gas emission in red soils under different land use types[J]. Soils, 2020, 52(2):348-355.[Nanang Zulkarnaen, 程谊, 张金波. 不同利用方式红壤反硝化势和气态产物排放特征[J]. 土壤, 2020, 52(2):348-355.]
    [28] Xing X Y, Sheng R, Xu H F, et al. Denitrification characteristics of dryland soils derived from different parent materials[J]. Soils, 2019, 51(5):949-954.[邢肖毅, 盛荣, 徐慧芳, 等. 不同母质发育旱地土壤反硝化功能差异及其关键影响因素[J]. 土壤, 2019, 51(5):949-954.]
    [29] Wang J Y, Chadwick D R, Cheng Y, et al. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen[J]. Science of the Total Environment, 2018, 616/617:908-917.
    [30] Page A L, Miller R H, Keeney D R. Methods of soil analysis:Chemical and microbiological properties[M]. Madison, Wisconsin:Soil Science Society of America, 1982.
    [31] Pansu M, Gautheyrou J. Handbook of soil analysis:Mineralogical, organic and inorganic methods groenekennis[M]. Berlin, Heidelberg, New York:Springer, 2006.
    [32] Liu Y, Shen K, Wu Y C, et al. Abundance and structure composition of nirK and nosZ genes as well as denitrifying activity in heavy metal-polluted paddy soils[J]. Geomicrobiology Journal, 2018, 35(2):100-107.
    [33] Cui P Y, Fan F L, Yin C, et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes[J]. Soil Biology & Biochemistry, 2016, 93:131-141.
    [34] Luo X Q, Chen Z, Hu R G, et al. Effect of long-term fertilization on the diversity of nitrite reductase genes(nirK and nirS) in paddy soil[J]. Environmental Science, 2010, 31(2):423-430.[罗希茜, 陈哲, 胡荣桂, 等. 长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响[J]. 环境科学, 2010, 31(2):423-430.]
    [35] Cleveland C C, Liptzin D. C:N:P stoichiometry in soil:Is there a "Redfield ratio" for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3):235-252.
    [36] Hartman W H, Richardson C J. Differential nutrient limitation of soil microbial biomass and metabolic quotients(qCO2):Is there a biological stoichiometry of soil microbes?[J]. PLoS One, 2013, 8(3):e57127.
    [37] Dong Z X, Zhu B, Jiang Y, et al. Seasonal N2O emissions respond differently to environmental and microbial factors after fertilization in wheat-maize agroecosystem[J]. Nutrient Cycling in Agroecosystems, 2018, 112(2):215-229.
    [38] Turner S, Mikutta R, Guggenberger G, et al. Distinct pattern of nitrogen functional gene abundances in top-and subsoils along a 120, 000-year ecosystem development gradient[J]. Soil Biology & Biochemistry, 2019, 132:111-119.
    [39] Reinhold-Hurek B, Hurek T. The genera Azoarcus, Azovibrio, Azospira and Azonexus[M]//The Prokaryotes. New York:Springer, 2006:873-891.
    [40] Li D D, Chen L, Xu J S, et al. Chemical nature of soil organic carbon under different long-term fertilization regimes is coupled with changes in the bacterial community composition in a Calcaric Fluvisol[J]. Biology and Fertility of Soils, 2018, 54(8):999-1012.
    [41] Briar S S, Fonte S J, Park I, et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems[J]. Soil Biology & Biochemistry, 2011, 43(5):905-914.
    [42] Magoč T, Salzberg S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
    [43] Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):E911-E920.
    [44] Shi Y, Huang G H. Relationship between soil denitrifying enzyme activities and N2 O emission[J]. Chinese Journal of Applied Ecology, 1999, 10(3):329-331.[史奕, 黄国宏. 土壤中反硝化酶活性变化与N2O排放的关系[J]. 应用生态学报, 1999, 10(3):329-331.]
    [45] Wang L F, Cai Z C. Effects of temperature and water regime on nitrification and denitrification activity of upland red soils[J]. Soils, 2004, 36(5):543-546, 560.[王连峰, 蔡祖聪. 水分和温度对旱地红壤硝化活力和反硝化活力的影响[J]. 土壤, 2004, 36(5):543-546, 560.]
    [46] Chee-Sanford J C, Connor L, Krichels A, et al. Hierarchical detection of diverse Clade II(atypical) nosZ genes using new primer sets for classical-and multiplex PCR array applications[J]. Journal of Microbiological Methods, 2020, 172:105908.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王海翠,刘兆东,李丹丹,柳开楼,黄庆海,赵炳梓,张佳宝.种植模式影响施肥导致的土壤反硝化势变化及其微生物机制[J].土壤学报,2022,59(1):242-252. DOI:10.11766/trxb202009250539 WANG Haicui, LIU Zhaodong, LI Dandan, LIU Kailou, HUANG Qinghai, ZHAO Bingzi, ZHANG Jiabao. Effect of Planting System on Fertilization-induced Variation of Soil Denitrification Potential and Its Microbial Mechanism[J]. Acta Pedologica Sinica,2022,59(1):242-252.

复制
分享
文章指标
  • 点击次数:632
  • 下载次数: 2398
  • HTML阅读次数: 924
  • 引用次数: 0
历史
  • 收稿日期:2020-09-25
  • 最后修改日期:2020-11-30
  • 录用日期:2021-02-08
  • 在线发布日期: 2021-02-09
  • 出版日期: 2022-01-11
文章二维码