玉米和大豆根系对滇中地区坡耕地红黏土抗剪强度的影响
作者:
中图分类号:

S157.1

基金项目:

国家自然科学基金项目(41461059)和云南省教育厅科学研究基金项目(2019J0178)资助


Effects of Maize and Soybean Roots on Topsoil Shear Strength of Red Clay on Sloping Farmland in Central Yunnan
Author:
Fund Project:

National Natural Science Foundation of China (No. 41461059) and Scientific Research Fund of Yunnan Provincial Department of Education (No. 2019J0178)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水土流失是限制山区坡耕地持续利用的主要问题。为探讨农作物根系固土机理,采用无侧限压缩试验测定了素土、玉米和大豆成熟期根土复合体的抗剪强度和应力应变特性,WinRHIZO(Pro.2019)根系分析系统测定了根系构型特征,分析了根土复合体力学特性与根系特征参数间的关系。结果表明:(1)玉米和大豆根系能显著增强土体抗剪强度(P < 0.01),其根土复合体强度相对素土分别提高了117.65%和71.91%;(2)两种农作物根土复合体黏聚力c与根长密度、根表面积密度、根体积密度、根重密度均呈极显著正相关(P < 0.01),其中D≤1mm细根对黏聚力增量Δc的贡献大于其他径级根系;(3)根系构型性状中,玉米根分支数高于大豆45.44%且各径级根系分布更均匀,其根土复合体随含根量的增加,在破坏时表现出弱应变硬化特征且裂缝拓展变缓,侧向变形减小。综上农作物根系均能增强土体抗剪强度,但根系结构类型不同则对土体力学特性的影响不同,细根和分支数较多的玉米根系更能有效增强土体强度和约束变形,因此须根系玉米对表层土体的固持能力优于直根系大豆。坡耕地利用中,可以通过合理布局须根系农作物来防治水土流失。

    Abstract:

    Objective The area of sloping farmland in central Yunnan accounts for 61.14% of the total arable land area, and its sustainability is affected by serious soil erosion. Thus, it is urgent to study the positive effects of the rational allocation of vegetation on the sloping land space on improving soil erosion and maintaining sustainable agricultural production. About 89.4% of the sloping farmland utilization in the province is for planting crops, and maize and soybean are the main crops in summer. Previous studies have shown that the soil-fixing capacity of vegetation roots plays a significant role in soil and water conservation. This study was conducted to explore the soil-fixing effect of corn and soybean roots and to provide a basis for the calculation of the soil-fixing ability of crop roots.Method In this study, a field experiment was designed to have three treatments and a total of 9 experimental plots; i.e. CK (Bare land), MM (mono-maize) and SS (mono-soybean). The unconfined compression tests were used to determine the shear strength and stress-strain characteristics of rootless soil and root-soil composites of maize (Zea mays L.) and soybean (Glycine max L.) at the mature stage. The WinRHIZO (Pro.2019) system was employed to analyze the root distribution and configuration characteristics. And then the relationship between shear strength and root parameters was studied.Result The results indicated that: (1) Compared with rootless soil, the roots of maize and soybean significantly enhance the shear strength of root-soil composite (P < 0.01), and the strength of the root-soil composites was increased by 117.65% and 71.91%, respectively; (2) The cohesion of two crop root-soil composites were significantly positively correlated with root length density, root surface area density, root volume density, and root weight density (P < 0.01). Also, the contribution of fine roots with D ≤ 1 mm to the cohesive force increment was greater than that of other diameter-level roots; (3) In the different root architecture traits, the number of root branches of maize was 45.44% higher than that of soybeans, and the root distribution of each diameter class was more even. The corn root-soil complex showed weak strain-hardening characteristics when the root content was increased. Also, the crack propagation slowed down and the lateral deformation decreased.Conclusion The root systems of the two crops could enhance the shear strength of the soil. However, the different root structure types demonstrated different effects on the mechanical properties of the soil. The maize root system with more fine roots and more branches can effectively enhance the strength and restrain the deformation. Thus, fibrous root maize is better than taproot soybeans in holding the surface soil. In the use of sloping farmland, it is possible to prevent soil erosion by rationally arranging fibrous root crops. This study provides a reference for the rational layout of crop planting to prevent soil erosion on slope farmland.

    参考文献
    [1] An T X, Zhou F, Wu Z Z, et al. Effect of crop intercropping on soil and water conservation in arable sloping land[J]. Research of Soil and Water Conservation, 2019, 26(2):17-22.陈正发,史东梅,何伟,等. 1980-2015年云南坡耕地资源时空分布及演变特征分析[J].农业工程学报, 2019, 35(15):256-265.
    [2] Burylo M, Hudek C, Rey F. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France)[J]. Catena, 2011, 84(1/2):70-78.
    [3] Xiong Y M, Xia H P, LI Z A, et al. Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance:A research review[J]. Chinese Journal of Applied Ecology, 2007, 18(4):895-904.熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报, 2007, 18(4):895-904.
    [4] Wang Y Q, Wang Y J, Zhang H J, et al. Impacts of soil structure on shear-resistantance of soil under different land uses in Jinyun Mountain of Chongqing City[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(3):40-45.王云琦,王玉杰,张洪江,等.重庆缙云山不同土地利用类型土壤结构对土壤抗剪性能的影响[J].农业工程学报, 2006, 22(3):40-45.
    [5] Feng S Y, Wang J G, Wen H, et al. Soil shear strength of collapsing erosion area in south Jiangxi of China relative to position of the soil and its influencing factors[J]. Acta Pedologica Sinica, 2020, 57(1):71-83.冯舒悦,王军光,文慧,等.赣南崩岗侵蚀区不同部位土壤抗剪强度及影响因素研究[J].土壤学报, 2020, 57(1):71-83.
    [6] Fan C C, Tsai M H. Spatial distribution of plant root forces in root-permeated soils subject to shear[J]. Soil and Tillage Research, 2016, 156:1-15.
    [7] Mickovski S B, Stokes A, van Beek R, et al. Simulation of direct shear tests on rooted and non-rooted soil using finite element analysis[J]. Ecological Engineering, 2011, 37(10):1523-1532.
    [8] Liu X P, Chen L H, Song W F. Study on the shear strength of forest root-loess composite[J]. Journal of Beijing Forestry University, 2006, 28(5):67-72.刘秀萍,陈丽华,宋维峰.林木根系与黄土复合体的抗剪强度试验研究[J].北京林业大学学报, 2006, 28(5):67-72.
    [9] Gao L, Hu G H, Xu N, et al. Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil[J]. Advances in Materials Science and Engineering, 2015, 2015:1-8.
    [10] Comino E, Druetta A. The effect of Poaceae roots on the shear strength of soils in the Italian alpine environment[J]. Soil and Tillage Research, 2010, 106(2):194-201.
    [11] Hu X S, Brierley G, Zhu H L, et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2013, 10(4):668-686.
    [12] Wei J, Zhang X M, Ding S W, et al. Effects of reinforcement conditions of jute fiber on unconfined compressive strength of soil in collapsing hill[J]. Journal of Soil and Water Conservation, 2015, 29(6):59-63.卫杰,张晓明,丁树文,等.黄麻纤维加筋条件对崩岗岩土无侧限抗压强度的影响[J].水土保持学报, 2015, 29(6):59-63.
    [13] Shi Q. Strength and deformation characteristics of reinforced saline soil with rice straw[D]. Lanzhou:Lanzhou University, 2011.石茜.稻草加筋滨海盐渍土的强度与变形特性[D].兰州:兰州大学, 2011.
    [14] Chen Z Y. Soil mechanics[M]. Beijing:Tsinghua University Press, 1994.陈仲颐.土力学[M].北京:清华大学出版社, 1994.
    [15] Bai L S, Fan M P, Wang Z L, et al. Relationship between root characteristics and aggregate stability in the field with maize and soybean intercropping[J]. Research of Soil and Water Conservation, 2019, 26(1):124-129.白录顺,范茂攀,王自林,等.间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系[J].水土保持研究, 2019, 26(1):124-129.
    [16] Bai W, Sun Z X, Zhang L Z, et al. Furrow loose and ridge compaction plough layer structure optimizing root morphology of spring maize and improving its water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21):88-97.白伟,孙占祥,张立祯,等.耕层土壤虚实结构优化春玉米根系形态提高水分利用效率[J].农业工程学报, 2019, 35(21):88-97.
    [17] Zhou H, Gong S, Zheng D F, et al. Root distribution characteristics of different soybean varieties in Heilongjiang Province and the relationship with yield[J]. Soybean Science, 2020, 39(1):52-61.周行,龚屾,郑殿峰,等.黑龙江省不同大豆品种根系分布特征及与产量的关系[J].大豆科学, 2020, 39(1):52-61.
    [18] Rickli C, Graf F, Rickli C, et al. Effects of forests on shallow landslides-A case studies in Switzerland[J]. Forest Snow&Landscape Research, 2009, 82(1):33-44.
    [19] Duan Q S, Zhao Y K, Yang S, et al. Effect of herb roots improving shear strength of unconfined compressed solum[J]. Acta Pedologica Sinica, 2019, 56(3):650-660.段青松,赵燚柯,杨松,等.不同草本植物根系提高无侧限受压土体的抗剪强度[J].土壤学报, 2019, 56(3):650-660.
    [20] 安曈昕,周锋,吴珍珍,等.坡耕地间作作物群体水土保持耕作措施[J].水土保持研究, 2019, 26(2):17-22.
    [21] Chen X Q, Fan M P, Wang Z L, et al. Effect of different planting patterns on soil and water conservation of sloping cropland in central Yunnan[J]. Journal of Soil and Water Conservation, 2015, 29(4):48-52, 65.陈小强,范茂攀,王自林,等.不同种植模式对云南省中部坡耕地水土保持的影响[J].水土保持学报, 2015, 29(4):48-52, 65.
    [22] Chen Z F, Shi D M, He W, et al. Quality evaluation of slope farmland in Yunnan Province based on "element-demand-regulation" framework[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12):236-246.陈正发,史东梅,何伟,等.基于"要素-需求-调控"的云南坡耕地质量评价[J].农业工程学报, 2020, 36(12):236-246.
    [23] Nanjing Hydraulic Research Institute. Industry Standard of the People's Republic of China:Geotechnical Test Regulation (SL237-1999)[M]. Beijing:China Water Resources and Hydropower Press, 1999.南京水利科学研究院.中华人民共和国行业标准:土工试验规程(SL237-1999)[M].北京:中国水利水电出版社, 1999.
    [24] Yen C P. The major patterns of root growth of the useful plants for soil conservation in Taiwan[J]. Journal of Chinese Soil and Water Conservation, 1973, 4(1):65-85.
    [25] Wang X H, Ma C, Wang Y Q, et al. Effect of root architecture on rainfall threshold for slope stability:Variabilities in saturated hydraulic conductivity and strength of root-soil composite[J]. Landslides, 2020, 17(8):1965-1977.
    [26] Wu H Y. Characteristics of root architecture and single root tensile of different plants under simulated slope conditions[D]. Beijing:Beijing Forestry University, 2020.伍红燕.模拟边坡条件下不同植物根构型及其单根抗拉特性研究[D].北京:北京林业大学, 2020.
    [27] Osman N, Barakbah S S. Parameters to predict slope stability-Soil water and root profiles[J]. Ecological Engineering, 2006, 28(1):90-95.
    [28] Li J X, He B H, Chen Y, et al. Root distribution features of typical herb plants for slope protection and their effects on soil shear strength[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10):144-152.李建兴,何丙辉,谌芸,等.不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响[J].农业工程学报, 2013, 29(10):144-152.
    [29] Zheng Z C, Zhang X Z, Li T X, et al. Change characteristics and influencing factors of soil shear strength during maize growing period[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):125-130, 172.郑子成,张锡洲,李廷轩,等.玉米生长期土壤抗剪强度变化特征及其影响因素[J].农业机械学报, 2014, 45(5):125-130, 172.
    [30] Liu D H, Li Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion[J]. Journal of Soil Water Conservation, 2003, 17(3):34-37, 117.刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报, 2003, 17(3):34-37, 117.
    [31] Czarnes S, Hallett P D, Bengough A G, et al. Root-and microbial-derived mucilages affect soil structure and water transport[J]. European Journal of Soil Science, 2000, 51(3):435-443.
    [32] Wang H J. Sorption of PAHs to soybean and wheat roots and the bioavailability of sorbed PAHs[D]. Nanjing:Nanjing Agricultural University, 2017.王红菊.大豆和小麦根系对PAHs的吸持作用及其生物有效性[D].南京:南京农业大学, 2017.
    [33] Ma Z H. The characteristic of anti-erosion characteristics on slope land of red soil during the growth of coin[D]. Wuhan:Huazhong Agricultural University, 2016.马中浩.南方红壤区玉米生育期坡地土壤抗侵蚀性特征[D].武汉:华中农业大学, 2016.
    [34] Tsige D, Senadheera S, Talema A. Stability analysis of plant-root-reinforced shallow slopes along mountainous road corridors based on numerical modeling[J]. Geosciences, 2019, 10(1):19.
    [35] Ji X L, Yang P. A root fractal dimension-based study on ecological slope stability[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(6):1462-1468.嵇晓雷,杨平.基于植被根系分形维数的生态边坡位移场研究[J].地下空间与工程学报, 2014, 10(6):1462-1468.
    [36] Zegeye A D, Langendoen E J, Tilahun S A, et al. Root reinforcement to soils provided by common Ethiopian highland plants for gully erosion control[J]. Ecohydrology, 2018, 11(6):e1940.
    [37] Yilmaz Y. Compaction and strength characteristics of fly ash and fiber amended clayey soil[J]. Engineering Geology, 2015, 188:168-177.
    [38] Zhou C Y, Wang S J, Li X, et al. Shearing strength of sandy clayey purple soil reinforced with sodium silicate and glass fiber in combination[J]. Acta Pedologica Sinica, 2019, 56(3):592-601.周超云,汪时机,李贤,等.水玻璃和玻璃纤维联合改良砂质黏性紫色土抗剪强度研究[J].土壤学报, 2019, 56(3):592-601.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张立芸,段青松,范茂攀,杨亚丽,程伟威,李永梅.玉米和大豆根系对滇中地区坡耕地红黏土抗剪强度的影响[J].土壤学报,2022,59(6):1527-1539. DOI:10.11766/trxb202012140689 ZHANG Liyun, DUAN Qingsong, FAN Maopan, YANG Yali, CHENG Weiwei, LI Yongmei. Effects of Maize and Soybean Roots on Topsoil Shear Strength of Red Clay on Sloping Farmland in Central Yunnan[J]. Acta Pedologica Sinica,2022,59(6):1527-1539.

复制
分享
文章指标
  • 点击次数:747
  • 下载次数: 1596
  • HTML阅读次数: 1079
  • 引用次数: 0
历史
  • 收稿日期:2020-12-14
  • 最后修改日期:2021-06-04
  • 录用日期:2021-10-19
  • 在线发布日期: 2021-10-20
文章二维码