太湖流域典型农田土壤磷库演变特征及环境风险预测
作者:
基金项目:

国家自然科学基金项目(41671304)和国家重点研发计划项目(2017YFD0200206)资助


Soil Phosphorus Pool Evolution and Environmental Risk Prediction of Paddy Soil in the Taihu Lake Region
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 41671304), and the National Key Research and Development Program of China (No. 2017YFD0200206)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水体磷污染及其产生的富营养化等生态效应已成为流域性突出问题,其主要来源之一为农田磷流失。磷流失主要受土壤磷形态及有效性等因素影响,而土壤磷库又具有很强的空间分异特征。因此,聚焦水体富营养化较为突出的太湖流域,选取典型水旱轮作农田土壤为研究对象,基于系统随机布点法采集农田土壤样本319份,植株样本83株,分析土壤磷库演变规律并预测其环境风险。研究结果表明:与全国第二次土壤普查及2009年前期调查结果相比,该区域土壤全磷与有效磷(Olsen-P)含量均显著提高。根据水稻土Olsen-P的临界意义,该区域93.1%的农田土壤有效磷含量超过10 mg·kg–1,土壤基本不缺磷;有效磷高于20 mg·kg–1占总土壤样本的65.2%,说明大部分农田土壤磷库处于盈余状态。进一步基于磷素生物有效性的分级方法(biologically based P,BBP)对土壤磷的生物有效性进行分析,发现氯化钙磷(CaCl2-P)、柠檬酸磷(Citrate-P)、酶提取磷(Enzyme-P)以及盐酸磷(HCl-P)与Olsen-P均呈极显著正相关(P < 0.001),说明四种形态磷素均为土壤有效磷源。土壤全磷和有效磷含量呈极显著正相关关系(P < 0.001),土壤有效磷与植株地上部分(籽粒+秸秆)以及地下部分(根)全磷含量呈显著正相关关系(P < 0.01)。同时基于CaCl2-P与Olsen-P的相关性分析,认为该区域能造成环境风险的土壤有效磷阈值为30 mg·kg–1,超过环境阈值,环境污染风险会大大增加。因此,针对该区域土壤磷库较强的空间差异性,建议在区域养分管理以及环境保护过程中重点关注土壤磷的高效利用。

    Abstract:

    Objective Agricultural sustainable development and aquatic ecological environment security are faced with numerous challenges. As a non-renewable resource, phosphorus (P) is an essential element for crop growth, but has the potential to cause water eutrophication. Disparities in P management such as fertilizer or manure and the harvested crop P removal result in a massive variation of P imbalances in agricultural systems. Phosphorus loss is mainly affected by the form and availability of soil P.Method Therefore, in this paper, considering strong spatial differentiation characteristics of soil P pools and availability, the soils of typical flood and drought rotation farmlands were selected. The farmlands were located in the Taihu Lake Region in the lower reaches of the Yangtze River. In detail, 319 farmland soil samples and 83 wheat samples were collected based on the systematic random point distribution method. The spatial differences of soil phosphorus fractionations and crop P uptake were analyzed.Result Compared with the results of the second national soil survey and the survey in 2009, soil total P (TP) and available P(Olsen-P)increased significantly in the Taihu Lake Region. Soil Olsen-P concentration in Changshu and Yixing city ranged between 2.19-112.5 mg·kg–1 and 5.21-109.7 mg·kg–1, respectively. The average concentration was 37.6 mg·kg–1 and 29.8 mg·kg–1, which increased by 24.6 mg·kg–1 and 7.9 mg·kg–1 --in contrast to 2009. The concentration of available P exceeded 10 mg·kg–1 of 93.1% of soil samples, and 65.2% of the total soil samples had more than 20 mg·kg–1, which indicated that most of the paddy soil P pool was in surplus. Furthermore, we analyzed soil P availability using the biologically-based P (BBP) method, and found that CaCl2-P, Citrate-P, Enzyme -P and HCl-P had a significant positive correlation with Olsen-P (P < 0.001). This indicates that those four P forms were all available sources of soil P. We also found a notable relationship between soil TP and Olsen-P (P < 0.001) or crop TP (P < 0.01) concentration. Meanwhile, the correlation analysis of CaCl2-P and Olsen-P indicated the breakpoint of environmental risk, which was 30 mg·kg–1.Conclusion In view of the strong spatial differences of soil phosphorus pools in this region, it is suggested to focus on the efficient utilization of soil phosphorus in the regional nutrient management and environmental protection. The results are expected to provide basic data support for increasing P use efficiency as well as agricultural non-point source pollution control in the Taihu Lake Region.

    参考文献
    [1] Alewell C, Ringeval B, Ballabio C, et al. Global phosphorus shortage will be aggravated by soil erosion[J]. Nature Communications, 2020, 11(1):4546.
    [2] Powers S M, Bruulsema T W, Burt T P, et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins[J]. Nature Geoscience, 2016, 9(5):353-356.
    [3] Liu X, Sheng H, Jiang S Y, et al. Intensification of phosphorus cycling in China since the 1600s[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10):2609-2614.
    [4] Wang Y, Zhao X, Wang L, et al. Accumulation, environmental risk and control of phosphorus in rice/wheat rotation farmland in Taihu Lake Watershed[J]. Journal of Agro-Environment Science, 2014, 33(5):829-835汪玉,赵旭,王磊,等.太湖流域稻麦轮作农田磷素累积现状及其环境风险与控制对策[J].农业环境科学学报, 2014, 33(5):829-835.
    [5] Wang X C, Xie P F, Li Q, et al. Ecological environment of the Yangtze Estuary and protection countermeasures[J]. Reserch of Environmental Science, 2020, 33(5):1197-1205王孝程,解鹏飞,李晴,等.长江口海域生态环境状况及保护对策[J].环境科学研究, 2020, 33(5):1197-1205.
    [6] Chen S R, He L H, Lin L Y, et al. Change trends of surface water quality in the mainstream of the Yangtze River during the past four decades[J]. Reserch of Environmental Science, 2020, 33(5):1119-1128陈善荣,何立环,林兰钰,等.近40年来长江干流水质变化研究[J].环境科学研究, 2020, 33(5):1119-1128.
    [7] Liu L S, Huang G X, Wang F, et al. Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin[J]. Reserch of Environmental Science, 2020, 33(5):1081-1090刘录三,黄国鲜,王璠,等.长江流域水生态环境安全主要问题、形势与对策[J].环境科学研究, 2020, 33(5):1081-1090.
    [8] MacDonald G K, Bennett E M, Taranu Z E. The influence of time, soil characteristics, and land-use history on soil phosphorus legacies:A global meta-analysis[J]. Global Change Biology 2012, 18(6):1904-1917.
    [9] Sattari S Z, Bouwman A F, Giller K E, et al. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6348-6353.
    [10] Gao X S, Xiao Y, Deng L J, et al. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China[J]. Journal of Integrative Agriculture, 2019, 18(2):279-289.
    [11] Chen S, Lin B W, Li Y Q, et al. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China[J]. Geoderma, 2020, 357:113937.
    [12] Zhan Q L, Zhang L M, Zhou B Q, et al. Spatial variation in phosphorus accumulation and the driving factors in cultivated lands in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):274-283詹秋丽,张黎明,周碧青,等.福建耕地土壤磷素富集空间差异及其影响因素[J].中国生态农业学报, 2018, 26(2):274-283.
    [13] Li Y L, Liu Z Y, Yan J, et al. Spatial distribution of microbial biomass carbon, nitrogen and phosphorus pools in typical farmland soils in North China Plain-A case study of Quzhou County[J]. Acta Pedologica Sinica, 2021, 58(1):235-245李炎龙,刘梓雅,严景,等.华北平原典型农田土壤微生物生物量碳氮磷库的县域分布特征——以河北省曲周县为例.土壤学报2021, 58(1):235-245.
    [14] Zhu W B, Zhao X, Wang S Q, et al. Inter-annual variation in P speciation and availability in the drought-rewetting cycle in paddy soils[J]. Agriculture Ecosystems&Environment, 2019, 286:106652.
    [15] Kruse J, Abraham M, Amelung W, et al. Innovative methods in soil phosphorus research:A review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(1):43-88.
    [16] DeLuca T H, Glanville H C, Harris M, et al. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes[J]. Soil Biology&Biochemistry, 2015, 88:110-119.
    [17] Cai G, Hu Y J, Wang T T, et al. Characteristics and influencing factors of biologically-based phosphorus Ffractions in the farmland soil[J]. Environmental Science, 2017, 38(4):1606-1612蔡观,胡亚军,王婷婷,等.基于生物有效性的农田土壤磷素组分特征及其影响因素分析[J].环境科学, 2017, 38(4):1606-1612.
    [18] Lu R K. Analtyical methods for soil and agro-chemistry[M]. Beijing:China Agriculture Science and Tecnology Press, 2000鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    [19] Soil Survey Office of Yixing County. Soil history of Yixing County, Jiangsu Province. Wuxi:Wuxi Agriculture Bureau. 1988宜兴县土壤普查办公室.江苏省宜兴县土壤志.无锡:无锡市农业局, 1988.
    [20] Soil Survey Office of Changshu City. Changshu Soil Survey, Jiangsu Province. Changshu:Soil Survey Office of Changshu City. 1985常熟市土壤普查办公室.江苏省常熟市土壤志.常熟:常熟市土壤普查办公室, 1985.
    [21] Wang S Q, Zhao X, Xing G X, et al. Phosphorus pool in paddy soil and scientific fertilization in typical areas of Taihu Lake watershed, China[J]. Soils, 2012, 44(1):158-162王慎强,赵旭,邢光熹,等.太湖流域典型地区水稻土磷库现状及科学施磷初探[J].土壤, 2012, 44(1):158-162.
    [22] Lu R K, Soil-plant nutrition principle and fertilization[M]. Beijing:Chemical Industry Press, 1998.鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社, 1998.
    [23] Wang Y, Ren T, Zhang Y, et al. Limitation standard of phosphorus management under paddy-upland rotation croping system in Yangtze River Basin[J]. Phosphate&Compound Fertilizer, 2021, 36(2):19-21汪玉,任涛,张勇,等.长江流域水旱轮作体系磷素管理限量标准(草案)[J].磷肥与复肥, 2021, 36(2):19-21.
    [24] Li Z G, Zhang R H, Liu C, et al. Phosphorus spatial distribution and pollution risk assessment in agricultural soil around the Danjiangkou reservoir, China[J]. Science of the Total Environment, 2020, 699:134417.
    [25] Ma J C, He P, Xu X P, et al. Temporal and spatial changes in soil available phosphorus in China (1990-2012)[J]. Field Crop Research, 2016, 192:13-20.
    [26] Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil 2011, 349(1/2):157-167.
    [27] Liu F C, Shi X Z, Pan X Z, et al. Characteristics of spatial variability of total phosphorus in soil of the typical area of Taihu Lake watershed[J]. Scientia Geographica Sinica. 2003, 23(1):77-81刘付程,史学正,潘贤章,等.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学, 2003, 23(1):77-81.
    [28] Wang Y, Zhao X, Wang L, et al. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China[J]. Field Crop Research, 2016, 198:32-39.
    [29] Yuan J, Wang L, Wang S, et al. The use of biologically based phosphorus fractions to evaluate soil P availability in reduced P-input paddy soils[J]. Soil Use&Management, 2018, 34(3):326-334.
    [30] Yuan J H, Wang Y, Wang S Q, et al. Characteristic of soil P availability in reduced P-input rice-wheat cropping rotation paddy soils[J]. Journal of Ecology and Rural Environment, 2018, 34(7):599-605袁佳慧,汪玉,王慎强,等.稻麦轮作磷肥减施下水稻土磷素生物有效性特征[J].生态与农村环境学报, 2018, 34(7):599-605.
    [31] Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment. Journal of Environmental Quality, 1995, 24(5):904-910.
    [32] Xia X J, Hu Q Y, Zhu L Q, et al. Study on dynamic changes of nitrogen and phosphorus in surface water of paddy field and runoff loss in Taihu region[J]. Journal of Soil and Water Conservation, 2011, 25(4):21-25夏小江,胡清宇,朱利群,等.太湖地区稻田田面水氮磷动态特征及径流流失研究[J].水土保持学报, 2011, 25(4):21-25.
    [33] Zhang H C, Zhang H A, Cao Z H. Research on phosphorus runoff losses from paddy soils in the Taihu Lake region and its Olsen-P "change-point"[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2004, 28(5):6-10张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的"突变点"[J].南京林业大学学报(自然科学版), 2004, 28(5):6-10.
    [34] Menezes-Blackburn D, Giles C, Darch T, et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils:A review[J]. Plant and Soil, 2018, 427(1/2):5-16.
    [35] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:A review[J]. Science of the Total Environment, 2018, 612:522-537.
    [36] Richardson A E, Lynch J P, Ryan P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture[J]. Plant and Soil, 2011, 349(1/2):121-156.
    [37] Yao Q M, Li Z, Song Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil[J]. Nature Ecology&Evolution, 2018, 2(3):499-509.
    [38] Li C C, Zhou J, Wang X R, et al. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean[J]. Plant Cell and Environment, 2019, 42(6):2015-2027.
    [39] Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. ISME Journal, 2018, 12(10):2339-2351.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪玉,袁佳慧,陈浩,陈光蕾,赵洪猛,徐灵颖,赵旭,王慎强.太湖流域典型农田土壤磷库演变特征及环境风险预测[J].土壤学报,2022,59(6):1640-1649. DOI:10.11766/trxb202012160696 WANG Yu, YUAN Jiahui, CHEN Hao, CHEN Guanglei, ZHAO Hongmeng, XU Lingying, ZHAO Xu, WANG Shenqiang. Soil Phosphorus Pool Evolution and Environmental Risk Prediction of Paddy Soil in the Taihu Lake Region[J]. Acta Pedologica Sinica,2022,59(6):1640-1649.

复制
分享
文章指标
  • 点击次数:699
  • 下载次数: 1905
  • HTML阅读次数: 1805
  • 引用次数: 0
历史
  • 收稿日期:2020-12-16
  • 最后修改日期:2021-06-29
  • 录用日期:2021-07-26
  • 在线发布日期: 2021-08-09
文章二维码