基于万维网大数据的农药场地土壤污染快速预测方法研究
作者:
基金项目:

国家重点研发计划专项(2018YFC1800104,2021YFC1809104)、科技基础性工作专项(2015FY110700-S2)资助


Research on the Method of Rapid Prediction of Soil Pollution in Pesticide Polluted-Sites Based on Network Big Data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    及时高效预测和筛查潜在农药污染场地对环境染风险管控具有重要意义。基于万维网公开的46个农药场地样本数据,利用五分制层次分析法建立农药场地土壤污染快速预测指标体系,包括产品特性、局部气象条件、土壤属性和场地生产特性4个因素及其相应的产品毒性、产品持久性、年均气温、年均降水、年均风速、光照、土壤质地、pH、有机质含量、生产时间和闲置时间11个特征指标。结果表明,农药场地生产时间、产品毒性及其持久性指标五分制分级后与农药场地土壤污染均存在显著线性相关,三个指标不同组合对场地土壤污染的线性综合预测精度小于65%,而基于11个指标的机器学习方法(SVM模型和神经网络模型BP)综合预测精度为82%,但存在污染场地严重漏判问题。以综合评价指数值P≥0.6作为农药场地土壤污染的预测阈值,五分制层次分析法综合预测精度达到91%,优于线性预测以及机器学习方法,具有关键数据需求少、预测快速高效特点,体现 “宁严勿漏”的预测原则,可用于各类型农药场地的土壤污染筛查。

    Abstract:

    【Objective】 Predicting and screening potential pesticide-contaminated sites timely and efficiently is important for controlling environmental pollution. 【Method】 Based on 46 pesticide sites samples published on the World Wide Web, the index system and method for rapid prediction of soil pollution in pesticide sites was established by a five-score analytic hierarchy process. 【Result】The predictive system was constituted with four factors: product characteristics, local climatic conditions, soil properties and site characteristics, including 11 characteristic indicators: product toxicity,product persistence, average annual temperature, average annual precipitation, average annual wind speed, light, soil texture, pH, organic matter content, production time and idle time. There is a significant linear correlation between the three indicators: production time level, product toxicity and durability level, and the soil pollution of the pesticide site. The linear comprehensive prediction accuracy of the three indicators is less than 65%. Also, the comprehensive judgment accuracy of the machine (SVM, BP) learning method combining 11 indicators is 82%, but all of them have significant limitations as they missed classified the severity of the contaminated sites. 【Conclusion】The comprehensive evaluation index value P≥0.6 is used as the prediction threshold of soil pollution in pesticide sites. The accuracy of the comprehensive prediction of the five score AHP is 91%, which is better than linear prediction and the machine learning method. It has the characteristics of low demand for key data, and efficient , and reflects the principle of“Implemented to the strictest standards without leaving a contaminated site”. It can be used for pre-diagnosis of soil pollution in various types of pesticide sites.

    参考文献
    [1] Lewis K A,Tzilivakis J,Warner D J,et al. An international database for pesticide risk assessments and management[J]. Human and Ecological Risk Assessment,2016,22(4):1050-1064.
    [2] Pesticide Inspection Institute of the Ministry of agriculture and rural areas of the people's Republic of China. China Pesticide Information Network[DB/OL]. http://www.chinapestici-de.org.cn/hysj/index.jhtml. 2020-5-1.[中华人民共和国农业农村部农药检定所. 中国农药信息网[DB/OL]. http://www.chinapesticide.org.cn/hysj/index.jhtml.2020-5-1.]
    [3] Zhao L,Teng Y,Luo Y M. Status of organochlorine pesticide contaminated sites in China and advances in site remediation[J]. Soils,2018,50(3):435-445.[赵玲,滕应,骆永明. 我国有机氯农药场地污染现状与修复技术研究进展[J]. 土壤,2018,50(3):435-445.]
    [4] Horta A,Malone B,Stockmann U,et al. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination:A prospective review[J]. Geoderma,2015,241/242:180-209.
    [5] Bartsch C. The new federal law on brownfields:The small business liability relief and brownfields revitalization act[J]. Environmental Practice,2003,5(1):48-52.
    [6] Levrel H,Pioch S,Spieler R. Compensatory mitigation in marine ecosystems:Which indicators for assessing the "no net loss" goal of ecosystem services and ecological functions?[J]. Marine Policy,2012,36(6):1202-1210.
    [7] Schädler S,Morio M,Bartke S,et al. Designing sustainable and economically attractive brownfield revitalization options using an integrated assessment model[J]. Journal of Environmental Management,2011,92(3):827-837.
    [8] Die Q Q,Nie Z Q,Liu F,et al. Seasonal variations in atmospheric concentrations and gas-particle partitioning of PCDD/Fs and dioxin-like PCBs around industrial sites in Shanghai,China[J]. Atmospheric Environment,2015,119:220-227.
    [9] Fang Y Y,Nie Z Q,Die Q Q,et al. Spatial distribution,transport dynamics,and health risks of endosulfan at a contaminated site[J]. Environmental Pollution,2016,216:538-547.
    [10] Chakraborty S,Weindorf D C,Deb S,et al. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy[J]. Geoderma,2017,289:72-81.
    [11] Fan J N,Zhang Y,He X M,et al. BP neural network based prediction and evaluation of heavy metal pollution in soil around the enterprises in key areas of Hubei Province[J]. Journal of Huazhong Agricultural University,2019,38(4):55-62.[范俊楠,张钰,贺小敏,等. 基于BP神经网络的重点行业企业周边土壤重金属污染预测及评价[J]. 华中农业大学学报,2019,38(4):55-62.]
    [12] Liu S H,Zeng G M,Niu Q Y,et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi:A mini review[J]. Bioresource Technology,2017,224:25-33.
    [13] Yang Q Q,Li Z Y,Lu X N,et al. A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J]. Science of the Total Environment,2018,642:690-700.
    [14] Gowd S S,Reddy M R,Govil P K. Assessment of heavy metal contamination in soils at Jajmau(Kanpur)and Unnao industrial areas of the Ganga Plain,Uttar Pradesh,India[J]. Journal of Hazardous Materials,2010,174(1/2/3):113-121.
    [15] Han W,Gao G H,Geng J Y,et al. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin,China[J]. Chemosphere,2018,197:325-335.
    [16] Weber R,Watson A,Forter M,et al. Persistent organic pollutants and landfills - A review of past experiences and future challenges[J]. Waste Management & Research,2011,29(1):107-121.
    [17] Khan S,He X X,Khan J A,et al. Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system[J]. Chemical Engineering Journal,2017,318:135-142.
    [18] Song X,Lin N,Yin P H. Contaminated site remediation industry in China:Current state and future trends[J]. Soils,2015,47(1):1-7.[宋昕,林娜,殷鹏华. 中国污染场地修复现状及产业前景分析[J]. 土壤,2015,47(1):1-7.]
    [19] Public Meteorological Service Center of China Meteorological Administration. China weather net[DB/OL]. http://www.weather.com.cn/. 2020-5-1.[中国气象局公共气象服务中心. 中国天气网[DB/OL]. http://www.weather.com.cn/. 2020-05-01]
    [20] Institute of Soil Science,Chinese Academy of Sciences. China soil database[DB/OL]. http://vdb3.soil.csdb.cn/. 2020-5-1.[中国科学院南京土壤研究所. 中国土壤数据库[OL/DB]. http://vdb3.soil.csdb.cn/. 2020-5-1.]
    [21] Yu D S,Shi X Z,Sun W X,et al. Estimation of China soil organic carbon storage and density based on 1:1000000 soil database[J]. Chinese Journal of Applied Ecology,2005,16(12):2279-2283.[于东升,史学正,孙维侠,等. 基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J]. 应用生态学报,2005,16(12):2279-2283.]
    [22] University of Hertfordshire. PPDB:Pesticide Properties DataBase[DB/OL].[2020-5-1]. http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm.
    [23] National Health Commission of the People's Republic of China. GBZ230-2010,Classification for hazards of occupational exposure to toxicant[S]. Beijing:Standards Press of China,2011:1-6.[中华人民共和国国家卫生健康委员会.GBZ230-2010,职业性接触毒物危害程度分级[S]. 北京:中国标准出版社,2011:1-6.]
    [24] Shively E. CAS surveys its first 100 years[J].Chemical & Engineering News,2007,85(24):13.
    [25] Liu J. Study on spatial and temporal variation of the boundary and area of the semi-arid region in Northern China over the past 60 years[D]. Xi'an:Northwest University,2019.[刘洁. 近60年来中国北方半干旱区界线与范围时空变化特征研究[D]. 西安:西北大学,2019.]
    [26] Zeng X B. Acidification of red soils and control methods[J]. Chinese Journal of Soil Science,2000,31(3):111-113,145.[曾希柏. 红壤酸化及其防治[J]. 土壤通报,2000,31(3):111-113,145.]
    [27] Foreman W T,Majewski M S,Goolsby D A,et al. Pesticides in the atmosphere of the Mississippi River Valley,part Ⅱ-air[J]. Science of the Total Environment,2000,248(2/3):213-226.
    [28] Passatore L,Rossetti S,Juwarkar A A,et al. Phytoremediation and bioremediation of polychlorinated biphenyls(PCBs):State of knowledge and research perspectives[J]. Journal of Hazardous Materials,2014,278:189-202.
    [29] Lian Q C. Risk analysis and countermeasure of construction project based on fuzzy analytic hierarchy process research-A case study of Beijing M project[D]. Xi'an:Xi'an Polytechnic University,2019.[连启超. 基于模糊层次分析法的建设工程项目的风险分析及对策研究——以北京M项目为例[D]. 西安:西安工程大学,2019.]
    [30] Yuan Y L. The research on the construction engineering project risk management based on fuzzy analytic hierarchy process[D]. Chongqing:Chongqing University,2013.[元云丽. 基于模糊层次分析法(FAHP)的建设工程项目风险管理研究[D]. 重庆:重庆大学,2013.]
    [31] Guo L Y,Liu B L. Grey correlation evaluation of listed companies' operating performance based on coefficient of variation[J]. Statistics & Decision,2005(3):18-19.[郭璐芸,刘蓓蕾. 基于变异系数法的上市公司经营业绩灰色关联评价[J]. 统计与决策,2005(3):18-19.]
    [32] Liu W,Bian Y F,Chen L L,et al. Comparative research of BP neural network estimates IRT parameters[J]. China Examinations,2013(2):7-11.[刘文,边玉芳,陈玲丽,等. BP神经网络估计IRT参数的比较研究[J]. 中国考试,2013(2):7-11.]
    [33] Sun H L. Correlation analysis of driving behavior based on correlation analysis and frequent pattern mining[D]. Fuxin,Liaoning:Liaoning Technical University,2019.[孙浩琳. 基于相关性分析和频繁模式挖掘的驾驶行为关联性分析[D]. 辽宁阜新:辽宁工程技术大学,2019.]
    [34] He L Z,Gielen G,Bolan N S,et al. Contamination and remediation of phthalic acid esters in agricultural soils in China:A review[J]. Agronomy for Sustainable Development,2015,35(2):519-534.
    [35] Dixit R,Wasiullah,Malaviya D,et al. Bioremediation of heavy metals from soil and aquatic environment:An overview of principles and criteria of fundamental processes[J]. Sustainability,2015,7(2):2189-2212.
    [36] Idowu O,Semple K T,Ramadass K,et al. Beyond the obvious:Environmental health implications of polar polycyclic aromatic hydrocarbons[J]. Environment International,2019,123:543-557.
    [37] Ministry of Ecology and Environment of the People's Republic of China. HJ 25.3-2019,Technical guidelines for risk assessment of on soil contamination of land for construction[S]. Beijing:China Environmental Publishing Group,2019.[生态环境部. HJ25.3-2019,建设用地土壤污染风险评估技术导则[S]. 北京:中国环境出版集团,2019.]
    [38] Wang Q H,Pang Z,Zheng R L,et al. Effects of contour grass hedges on migration of tribenuron-methyl residue in sloping cropland soil[J]. Journal of Agro-Environment Science,2016,35(6):1081-1089.[王庆海,庞卓,郑瑞伦,等. 等高草篱对坡耕地土壤苯磺隆残留迁移的影响[J]. 农业环境科学学报,2016,35(6):1081-1089.]
    [39] Alharbi O M L,Basheer A A,Khattab R A,et al. Health and environmental effects of persistent organic pollutants[J]. Journal of Molecular Liquids,2018,263:442-453.
    [40] Wu X M,Dong F S,Wu X H,et al. Impact of climate change on application risk of pesticide[J]. Plant Protection,2019,45(2):25-29.[吴秀明,董丰收,吴小虎,等. 气候变化对农药应用风险的影响[J]. 植物保护,2019,45(2):25-29.]
    [41] Xu P. Study on the speciation distribution of organochlorine pesticides in different types of soils[D]. Beijing:China University of Geosciences,2014.[徐鹏. 不同类型土壤中有机氯农药形态分布规律研究[D]. 北京:中国地质大学(北京),2014.]
    [42] Peng S Y,Ye H,Wei J,et al. Residues and dissipation of clothianidin,thiamethoxam,chlorpyrifos and thiosultap- monosodium in soil and sugarcane[J]. Agrochemicals,2020,59(11):814-820.[彭思雅,叶昊,韦婕,等. 噻虫胺、噻虫嗪、毒死蜱、杀虫单在土壤和甘蔗中的残留消解动态[J]. 农药,2020,59(11):814-820.]
    [43] Utembe W,Faustman E M,Matatiele P,et al. Hazards identified and the need for health risk assessment in the South African mining industry[J]. Human & Experimental Toxicology,2015,34(12):1212-1221.
    [44] Chen G H,Zou M T,Huang K X,et al. Methods analysis and frontiers review of vulnerability for coupled multihazard in Chemical Industry Park[J]. Chemical Industry and Engineering Progress,2019,38(5):2527-2535.[陈国华,邹梦婷,黄孔星,等. 化工园区多灾种耦合脆弱性方法探究与前沿综述[J]. 化工进展,2019,38(5):2527-2535.]
    [45] He Z B,Wen X H,Liu H,et al. A comparative study of artificial neural network,adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology,2014,509:379-386.
    [46] Kuo Y H,Kusiak A. From data to big data in production research:The past and future trends[J]. International Journal of Production Research,2019,57(15/16):4828-4853.
    [47] Yang J F,Qiao P R,Li Y M,et al. A review of machine-learning classification and algorithms[J]. Statistics & Decision,2019,35(6):36-40.[杨剑锋,乔佩蕊,李永梅,等. 机器学习分类问题及算法研究综述[J]. 统计与决策,2019,35(6):36-40.]
    [48] Liu T S. The research and application on BP neural network improvement[D]. Harbin:Northeast Agricultural University,2011.[刘天舒. BP神经网络的改进研究及应用[D]. 哈尔滨:东北农业大学,2011.]
    [49] National Oceanic and Atmospheric Administration. Hourly/sub-Hourly Observational Data Map[DB/OL]. https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly. 2020-11-01.
    [50] Hu H. Introduction of Geographic Information System history and prospects[D]. Beijing:China University of Geosciences,2011.[胡袆. 地理信息系统(GIS)发展史及前景展望[D]. 北京:中国地质大学,2011.]
    [51] Jiao C P. Comparison study on multi-category classification with binary SVMs[D]. Xi'an:Xidian University,2011.[焦春鹏. 基于二分类SVM的多分类方法比较研究[D]. 西安:西安电子科技大学,2011.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王鑫,于东升,马利霞,陆晓松,陈洋,冯凯月.基于万维网大数据的农药场地土壤污染快速预测方法研究[J].土壤学报,2022,59(3):709-722. DOI:10.11766/trxb202012300343 WANG Xin, YU Dongsheng, MA Lixia, LU Xiaosong, CHEN Yang, FENG Kaiyue. Research on the Method of Rapid Prediction of Soil Pollution in Pesticide Polluted-Sites Based on Network Big Data[J]. Acta Pedologica Sinica,2022,59(3):709-722.

复制
分享
文章指标
  • 点击次数:706
  • 下载次数: 1802
  • HTML阅读次数: 1494
  • 引用次数: 0
历史
  • 收稿日期:2020-12-30
  • 最后修改日期:2021-08-20
  • 在线发布日期: 2022-04-16
文章二维码