砷镉在不同矿物界面的相互作用过程
作者:
基金项目:

国家自然科学基金项目(41877038,42077016)和广东省“珠江人才计划”本土创新科研团队项目(2017BT01Z176)资助


Interfacial Reactions between As (Ⅴ) and Cd (Ⅱ) Co-adsorption onto Various Mineral Surfaces
Author:
  • HUANG Minxue

    HUANG Minxue

    School of Environmental Science, South China Normal University, Guangzhou 510006, China;National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUAN Yufeng

    GUAN Yufeng

    School of Environmental Science, South China Normal University, Guangzhou 510006, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SU Zixian

    SU Zixian

    School of Environmental Science, South China Normal University, Guangzhou 510006, China;National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TAO Liang

    TAO Liang

    National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China;Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 41877038 and 42077016) and the Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program of China (No. 2017BT01Z176)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    重金属元素镉砷由于毒性高、活性大及危害强等特点,其土壤界面化学过程是土壤科学研究中的热点问题。虽然已有大量报道涉及镉砷的界面化学过程研究,但很少排除pH这一重要因子对研究结果的干扰。因此,本研究通过序批式反应,在排除pH干扰的条件下,定量研究了砷及镉在不同矿物界面(包括氧化铝、二氧化钛和高岭石)单独存在以及共同存在条件下的相互作用过程。研究结果表明:不同矿物界面上砷和镉的吸附动力学符合准二级动力学模型,化学吸附为其控速步骤;镉及砷的吸附效率(吸附量/比表面积)在不同矿物界面上均呈现出二氧化钛界面远高于氧化铝界面,而氧化铝界面高于高岭石界面;随着镉/砷浓度比的递增,镉的关键界面作用过程调控机制由静电吸附控制为主逐步转变为静电吸附与形成界面-砷-镉三元络合物共同作用,继而转变为形成表面沉淀控制;而随着砷/镉浓度比的递增,砷的关键界面调控机制发生从吸附控制为主向沉淀控制为主的转变。该结果可为重金属元素在土壤矿物界面的微观化学作用过程及其调控措施研究提供借鉴。

    Abstract:

    Objective pH is the most important environmental factor influencing the reactivity of heavy metals on mineral surfaces. The purpose of this study was to investigate the interfacial reactions between As(Ⅴ) and Cd(Ⅱ) adsorption/co-adsorption onto different mineral surface excluding the interference of pH.Method Three different minerals: Al2O3, TiO2, and kaolin, were chosen and passed through 100-mesh sieve. The experiments for As(Ⅴ) and Cd(Ⅱ) adsorption onto the different minerals were conducted in serum bottles (Effective volume = 2 mL) at pH 6.0. The bottles containing 0.02-1 mmol·L–1 As(Ⅴ), 0.02-1 mmol·L–1 Cd(Ⅱ), 28 mmol·L–1 4-Morpholineethanesulfonic acid sodium salt (MES), 100 mmol·L–1 NaCl and 2.0 mg of mineral powders were placed on a rotator at 200 r·min–1 and 25 oC. Batch studies were conducted to assess the adsorption kinetics, adsorption isotherm and the influence of molar ratio of As(Ⅴ) and Cd(Ⅱ) on the extent of As(Ⅴ) and Cd(Ⅱ) adsorption.Result The adsorption kinetics showed that As(Ⅴ) and Cd(Ⅱ) adsorbed onto different mineral interfaces followed the pseudo-second-order kinetics model, and chemical adsorption was the rate-controlling steps. Furthermore, the normalized adsorption capacities of Cd(Ⅱ) and As(Ⅴ) were ranked as TiO2 > Al2O3 > kaolin. The adsorption abilities of As(Ⅴ) and Cd(Ⅱ) were enhanced by the co-existing Cd(Ⅱ) and As(Ⅴ). Specifically, the addition of As(Ⅴ) promoted the adsorption of Cd(Ⅱ) onto Al2O3, while the addition of Cd(Ⅱ) enhanced As(Ⅴ) adsorption onto TiO2. The synergistic effect of As(Ⅴ) and Cd(Ⅱ) co-adsorption was mainly controlled by the electrostatic adsorption and the ternary complex formation. Moreover, with the increase of Cd(Ⅱ)/As(Ⅴ) concentration ratio, the regulation mechanism of Cd(Ⅱ) adsorption gradually changed from the electrostatic adsorption to the synergy of the formation of interfacial - As(Ⅴ)- Cd(Ⅱ) ternary complex and electrostatic adsorption, and then changed to the formation of surface precipitate. Importantly, with the increase of As(Ⅴ)/Cd(Ⅱ) concentration ratio, the key regulation mechanism changed from adsorption controlling to surface precipitation controlling.Conclusion Electrostatic adsorption, formation of interfacial - As(Ⅴ)- Cd(Ⅱ) ternary complex, and surface precipitation were the critical mechanisms controlling the interfacial reactions between As(Ⅴ) and Cd(Ⅱ) adsorption onto various mineral surfaces at various ratios.

    参考文献
    [1] Zhao F J, Xie W Y, Wang P. Soil and human health[J]. Acta Pedologica Sinica, 2020, 57(1):1-11.赵方杰,谢婉滢,汪鹏.土壤与人体健康[J].土壤学报, 2020, 57(1):1-11.
    [2] Wu K, Huang S B, Su S P, et al. Preparation of chelating resin/SBA-15 composite materials for adsorption of heavy metals[J]. Journal of Natural Science of Hunan Normal University, 2016, 39(4):34-40.吴珂,黄水波,苏胜培,等.螯合树脂/SBA-15复合材料的制备及其对重金属的吸附研究[J].湖南师范大学自然科学学报, 2016, 39(4):34-40.
    [3] Yu H Y, Ding X, Li F, et al. The availabilities of arsenic and cadmium in rice paddy fields from a mining area:The role of soil extractable and plant silicon[J]. Environmental Pollution, 2016, 215:258-265.
    [4] Zhang X, Yan Y, Wadood S A, et al. Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis[J]. Applied Geochemistry, 2020, 123:104776.
    [5] Li Y, Shang J Y, Huang Y Z, et al. Research progress on passivation materials for cadmium-arsenic co-contamination in soil[J]. Acta Pedologica Sinica, 2021, 58(4):837-850.李英,商建英,黄益宗,等.镉砷复合污染土壤钝化材料研究进展[J].土壤学报, 2021, 58(4):837-850.
    [6] Zhang S T, Ren T, Zhou X Q, et al. Effects of rapeseed/wheat-rice rotation and fertilization on soil nutrients and distribution of aggregate carbon and nitrogen[J]. Acta Pedologica Sinica, 2021, DOI:10.11766/trxb202004090091.张顺涛,任涛,周橡棋,等.油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响[J].土壤学报, 2021, DOI:10.11766/trxb202004090091.
    [7] Lubin J H, Moore L E, Fraumeni J F, et al. Respiratory cancer and inhaled inorganic arsenic in copper smelters workers:A linear relationship with cumulative exposure that increases with concentration[J]. Environmental Health Perspectives, 2008, 116(12):1661-1665.
    [8] Ma L, Xu R, Jiang J. Adsorption and desorption of Cu (Ⅱ) and Pb (Ⅱ) in paddy soils cultivated for various years in the subtropical China[J]. Journal of Environmental Sciences, 2010, 22(5):689-695.
    [9] Khaokaew S, Chaney R L, Landrot G, et al. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions[J]. Environmental Science&Technology, 2011, 45(10):4249-4255.
    [10] Fulda B, Voegelin A, Kretzschmar R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper[J]. Environmental Science&Technology, 2013, 47(22):12775-12783.
    [11] Zhao X L, Jiang T, Du B. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils[J]. Chemosphere, 2014, 99:41-48.
    [12] Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science&Technology, 2016, 50(8):4178-4185.
    [13] Feng X H, Wang P, Shi Z Q, et al. A quantitative model for the coupled kinetics of arsenic adsorption/desorption and oxidation on manganese oxides[J]. Environmental Science&Technology Letters, 2018, 5(3):175-180.
    [14] Dou W Q, An Y, Qin L, et al. Advances in effects of soil pH on cadmium form[J]. Soils, 2020, 52(3):439-444.窦韦强,安毅,秦莉,等.土壤pH对镉形态影响的研究进展[J].土壤, 2020, 52(3):439-444.
    [15] An L H, Liu M C, Zhang J Q, et al. Sources of arsenic in soil and affecting factors of migration and release:A review[J]. Soils, 2020, 52(2):234-246.安礼航,刘敏超,张建强,等.土壤中砷的来源及迁移释放影响因素研究进展[J].土壤, 2020, 52(2):234-246.
    [16] Mo X X, Siebecker M G, Gou W X, et al. A review of cadmium sorption mechanisms on soil mineral surfaces revealed from synchrotron-based X-ray absorption fine structure spectroscopy:Implications for soil remediation[J]. Pedosphere, 2021, 31(1):11-27.
    [17] Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique[J]. Environmental Science&Technology, 1997, 31(2):321-326.
    [18] Raven K P, Jain A, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:Kinetics, equilibrium, and adsorption envelopes[J]. Environmental Science&Technology, 1998, 32(3):344-349.
    [19] Chen Y G, Ye W M, Yang X M, et al. Effect of contact time, pH, and ionic strength on Cd (Ⅱ) adsorption from aqueous solution onto bentonite from Gaomiaozi, China[J]. Environmental Earth Sciences, 2011, 64(2):329-336.
    [20] Randall S R, Sherman D M, Ragnarsdottir K V, et al. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals[J]. Geochim Cosmochim Acta, 1999, 63:2971-2987.
    [21] Jiang W, Lv J, Luo L, et al. Arsenate and cadmium co-adsorption and co-precipitation on goethite[J]. Journal of Hazardous Materials, 2013, 262:55-63.
    [22] Zhang Y C, Fan J J, Fu M L, et al. Adsorption antagonism and synergy of arsenate (Ⅴ) and cadmium (Ⅱ) onto Fe-modified rice straw biochars[J]. Environmental Geochemistry and Health, 2019, 41(4):1755-1766.
    [23] Wu J Z, Huang D, Liu X M, et al. Remediation of As (Ⅲ) and Cd (Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials, 2018, 348:10-19.
    [24] Yan L, Huang Y, Cui J, et al. Simultaneous As (Ⅲ) and Cd removal from copper smelting wastewater using granular TiO2 columns[J]. Water Research, 2015, 68:572-579.
    [25] Hu S, Lian F, Wang J. Effect of pH to the surface precipitation mechanisms of arsenate and cadmium on TiO2[J]. Science of the Total Environment, 2019, 666:956-963.
    [26] Granados-Correa F, Corral-Capulin N G, Olguín M T, et al. Comparison of the Cd (Ⅱ) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH)[J]. Chemical Engineering Journal, 2011, 171(3):1027-1034.
    [27] Hu S, Yan L, Chan T S, et al. Molecular insights into ternary surface complexation of arsenite and cadmium on TiO2[J]. Environmental Science&Technology, 2015, 49(10):5973-5979.
    [28] Elzinga E J, Kretzschmar R. In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd (Ⅱ) onto hematite[J]. Geochimica et Cosmochimica Acta, 2013, 117(5):53-64.
    [29] Wang C, Cui Y, Zhang J H, et al. Occurrence state of co-existing arsenate and nickel ions at the ferrihydrite-water interface:Mechanisms of surface complexation and surface precipitation via ATR-IR spectroscopy[J]. Chemosphere, 2018, 206:33-42.
    [30] Yan L, Hu S, Jing C Y. Recent progress of arsenic adsorption on TiO2 in the presence of coexisting ions:A review[J]. Journal of Environmental Sciences, 2016, 49:74-85.
    [31] Antelo J, Arce F, Fiol S. Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions[J]. Chemical Geology, 2015, 410:53-62.
    [32] Shayan A, Davey B G. A universal dimensionless phosphate adsorption isotherm for soil[J]. Soil Science Society of America Journal, 1978, 42(6):878-882.
    [33] Suzuki K, Kato T, Fuchida S, et al. Removal mechanisms of cadmium by δ-MnO2 in adsorption and coprecipitation processes at pH 6[J]. Chemical Geology, 2020:119744.
    [34] Liang J, Xu R, Jiang X, et al. Effect of arsenate on adsorption of Cd (Ⅱ) by two variable charge soils[J]. Chemosphere, 2007, 67(10):1949-1955.
    [35] Wei J S, Meng X G, Song Y H, et al. Surface mole-ratio method to distinguish surface precipitation and adsorption on solid-liquid interface[J]. Journal of Hazardous Materials, 2020, 397:122781.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄敏雪,管玉峰,苏子贤,陶亮.砷镉在不同矿物界面的相互作用过程[J].土壤学报,2022,59(6):1583-1593. DOI:10.11766/trxb202101140027 HUANG Minxue, GUAN Yufeng, SU Zixian, TAO Liang. Interfacial Reactions between As (Ⅴ) and Cd (Ⅱ) Co-adsorption onto Various Mineral Surfaces[J]. Acta Pedologica Sinica,2022,59(6):1583-1593.

复制
分享
文章指标
  • 点击次数:586
  • 下载次数: 1887
  • HTML阅读次数: 1802
  • 引用次数: 0
历史
  • 收稿日期:2021-01-14
  • 最后修改日期:2021-04-29
  • 录用日期:2021-07-15
  • 在线发布日期: 2021-08-17
文章二维码