硝酸还原酶合成的NO通过诱导酸敏感水稻根尖ROS积累引起酸毒
作者:
中图分类号:

Q945

基金项目:

国家自然科学基金项目(42020104004)资助


Low pH Stress Induces the Accumulation of ROS by Increasing Production of Nitrate Reductase-Dependent NO in Rice Root Tips
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 42020104004)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    酸毒是酸性土壤中限制作物生长的重要因子之一,但酸毒通常与金属离子毒性共存,难以在土壤中直接研究,目前关于水稻酸毒机制的报道较少。选用前期筛选的酸耐性不同的两个水稻品种Kasalath(酸耐性)和Jinguoyin(酸敏感),研究水稻的酸敏感性与活性氧(ROS)积累及氧化还原代谢相关酶的关系,并试图探讨酸毒害中一氧化氮(NO)信号与活性氧信号的调控关系。结果显示,低pH引起酸敏感水稻品种Jinguoyin中根尖NO和ROS的富集,但酸耐性水稻品种Kasalath中无显著变化。NO清除剂2-(4-羧基苯基)-4,4,5,5-四甲基咪唑啉-1-氧基-3-氧化物钾盐(cPTIO)可清除Jinguoyin根尖富集的NO和ROS。硝酸还原酶反馈抑制剂谷氨酰胺(Gln)可明显降低Jinguoyin在低pH下的根尖NO信号,而一氧化氮合酶抑制剂N'-硝基-L-精氨酸甲酯盐酸盐(L-NAME)对根尖NO信号无影响。低pH显著提高了Jinguoyin中硝酸还原酶基因NIA1NIA2NIA3的表达,同时也提高了硝酸还原酶活性。可见,低pH下Jinguoyin受到的酸毒与NO介导的ROS富集有关,酸毒下产生的NO信号主要由硝酸还原酶合成,其硝酸还原酶基因NIA1NIA2的表达调控硝酸还原酶活性的提高。

    Abstract:

    【Objective】 Low pH stress is one of the major factors limiting crop production on acidic soils. It often coexists with metal ion toxicity and this makes it difficult to explore directly the effect of pH in acidic soils. So far, the mechanisms of low pH stress in rice is poorly understood. 【Method】Two rice varieties with different low pH tolerance, Kasalath (low pH-tolerant) and Jinguoyin (low pH-sensitive), were selected to (i) study the relationship between low pH stress and the accumulation of nitric oxide (NO) and reactive oxygen species (ROS), and (ii) explore the regulatory relationship between NO and ROS under low pH stress. 【Result】Low pH caused the accumulation of NO and ROS in the root tips of Jinguoyin, but there was no significant change in Kasalath. The NO scavenger cPTIO reduced NO and ROS accumulation in root tips of Jinguoyin. Feedback inhibitor of nitrate reductase Gln significantly reduced NO content in the root tips of Jinguoyin under low pH, while L-NAME, a nitric oxide synthase inhibitor, did not affect NO content in the root tips of Jinguoyin. Low pH significantly increased the expression of nitrate reductase genes NIA1, NIA2 and NIA3 in Jinguoyin, and also increased the activity of nitrate reductase.【Conclusion】Low pH stress of Jinguoyin was related to the NO-mediated ROS accumulation. The NO signal generated under low pH stress is mainly synthesized by nitrate reductase through increasing the expression of NIA1 and NIA2.

    参考文献
    [1] von Uexküll H R,Mutert E. Global extent,development and economic impact of acid soils[J]. Plant and Soil,1995,171(1):1—15.
    [2] Guo J H,Liu X J,Zhang Y,et al. Significant acidification in major Chinese croplands[J]. Science,2010,327(5968):1008—1010
    [3] Food and Agriculture Organization(FAO). World agriculture:Towards 2015/2030 summary report[R]. Rome,2002.
    [4] Iuchi S,Koyama H,Iuchi A,et al. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(23):9900—9905.
    [5] Kochian L V,Piñeros M A,Liu J P,et al. Plant adaptation to acid soils:The molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology,2015,66:571—598.
    [6] Kobayashi Y,Kobayashi Y,Watanabe T,et al. Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions[J]. Plant Physiology,2013,163(1):180—192.
    [7] Wang H H,Li Y,Hou J J,et al. Nitrate reductase- mediated nitric oxide production alleviates Al-induced inhibition of root elongation by regulating the ascorbate-glutathione cycle in soybean roots[J]. Plant and Soil,2017,410(1/2):453—465.
    [8] Cai M Z,Zhang S N,Wang F M,et al. Protective effect of exogenously applied nitric oxide on aluminum-induced oxidative stress in soybean plants[J]. Russian Journal of Plant Physiology,2011,58(5):791—798.
    [9] Sun C L,Lu L L,Liu L J,et al. Nitrate reductase- mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat(Triticum aestivum)[J]. New Phytologist,2014,201(4):1240—1250.
    [10] Wang H,Huang J,Bi Y. Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots[J]. Plant Science,2010,179(3):281—288.
    [11] Zhang H,Li Y H,Hu L Y,et al. Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress[J]. Russian Journal of Plant Physiology,2008,55(4):469—474.
    [12] Tian Q Y,Sun D H,Zhao M G,et al. Inhibition of nitric oxide synthase(NOS)underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos[J]. New Phytologist,2010,174(2):322—331.
    [13] Bose J,Babourina O,Shabala S,et al. Aluminum- dependent dynamics of ion transport in Arabidopsis:Specificity of low pH and aluminum responses[J]. Physiologia Plantarum,2010,139(4):401—412.
    [14] Lager I,Andréasson O,Dunbar T L,et al. Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses[J]. Plant,Cell & Environment,2010,33(9):1513—1528.
    [15] Tsang D L,Edmond C,Harrington J L,et al. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent,ethylene-independent pathway[J]. Plant Physiology,2011,156(2):596—604.
    [16] Yan F,Schubert S,Mengel K. Effect of Low Root Medium pH on Net Proton Release,Root Respiration,and Root Growth of Corn(Zea mays L.)and Broad Bean(Vicia faba L.)[J]. Plant Physiology,1992,99(2):415—421.
    [17] Monshausen G B,Bibikova T N,Messerli M A,et al. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(52):20996—21001.
    [18] Tanimoto E,Fujii S,Yamamoto R,et al. Measurement of viscoelastic properties of root cell walls affected by low pH in lateral roots of Pisum sativum L[J]. Plant and Soil,2000,226(1):21—28.
    [19] Koyama H,Toda T,Hara T. Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana:Pectin-Ca interaction may play an important role in proton rhizotoxicity[J]. Journal of Experimental Botany,2001,52(355):361—368.
    [20] Chen H F,Zhang Q,Zhang Z H. Comparative transcriptome combined with metabolomic and physiological analyses revealed ROS-mediated redox signaling affecting rice growth and cellular iron homeostasis under varying pH conditions[J]. Plant and Soil,2019,434(1/2):343—361.
    [21] Long A,Huang W L,Qi Y P,et al. Low pH effects on reactive oxygen species and methylglyoxal metabolisms in Citrus roots and leaves[J]. BMC Plant Biology,2019,19(1):477.
    [22] Yang T Y,Huang W T,Zhang J,et al. Raised pH conferred the ability to maintain a balance between production and detoxification of reactive oxygen species and methylglyoxal in aluminum-toxic Citrus sinensis leaves and roots[J]. Environmental Pollution,2021,268,:115676.
    [23] Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop爠?孬??嵴??慊潝???坬慡湮杴?塐??桳敩湯?????湡癮潤氠療敩浯散湨瑥?潩晳?灲汹愬猲洰愱??洴攸洨戱爲愩渺改‰丹??倸??漲砻椹搳愰献攼?楲渾?渲椴捝欠敃汨?楮渠摈甠捆攬摚?潡确楧搠慑琬楚癨敡?獧琠牚攠獈献?楃湯?牰潡潲瑡獴?潶晥?睴桲敡慮瑳?獲敩数摴汯業湥朠獣孯?嵢??健汤愠湷瑩?卨挠業敥湴捡敢??はね??ㄠ?の?ㄠ?????????????????扬特?孥??嵲?卶捥桡慬牥瑤攠???匭捭桥?潩畡浴汥?渠???呯橸愠摳敩湧?婡?敩瑮?愠污???獣潴敩湮穧礠浲敩?牥攠灧汲慯捷整浨攠湡瑮?漠晣?杬汬畵捬潡獲攠???灮栠潨獯灭桥慯瑳整?摳敩桳礠摵牮潤来敲渠慶獡敲?楩湮?琠桰效?捣祯瑮潤獩潴汩?楮浳灛牊潝瘮攠獐?獡瑮牴攠獡獮?琠潓汯敩牬愬渲挰攱?椬渴″瀴氨愱港琲猩嬺?崴?…倣爸漲挱攲攻搳椶渱朮猼?潲显?琲栵敝?乚慨瑡楮潧渠慙氠??捚慨摡敮浧礠?漠晈?単捵楥攠湌挬敥獴?潡晬?琠桁敤?啡湮楣瑥攠摯?匠瑎慏琠敦獵?潣晴??浮攠物楮挠慰??のぴ???は???????づ???????㈠??つ????扯牴?季??嵴??楳汳爠潴祯?卥?卡畮穣略歛楊?丮??楣汴污攠牂???敮瑩?慡氠????瑡楬摩愭汏?督慩癤敥?潴晡?獩楡朠湓慩汮獩?捡愬氲挰椱甲洬″愲渨搴?刺伸匳‵愦琣?琲栱攲※昸漴爲攮晛爠潳湳琬?澇晎?犛愽瀬楉搮?猀礧猖琮攨洍楩挟?珑榲枌溗愆泇椋渭构孜?崔??呕牛敊湝搮猠?椗渍?偦沥愬渲琰?匲挬椳攲渨挴攩?劳????????瀻???瀮???ひ???财?????ㄠ????こ??戠片?存??嵵??楧氠牍漬祥?匠??椮愠??????慥獳攠歯???卦畦穥畣歴楳?乯?攠瑮?慴汲??删佯卸?捤慥氠捯楮甠浲?慳湩摳?敡汮散捥瑳爠楯捦?獰楬条湮慴汳猠??攠票?浡敶摹椠慭瑥潴牡獬?潳晴?牥慳灳楛摊?献礠獁瑣整浡椠捅?獯楬杯湧慩汣楡渠杓?楮湩?灡氬愲渰琱猵嬬?崵??倰氩愺渳琱″倹栦礣猸椲漱氲漻朳礱?祝?????????????ぉ??????????????抗爧?孱??嵶??桛潊畝搮栠生爁祦??′??刵椬瘳攵爨漱‰利????氹甦洣眸愲氱搲※??攴琷?慝氼??刾敛愲挷瑝椠癘敩?潮硧礠杊攬湆?猠灇攠捆椬教獡?慧戠楙漠瑊椬捥?猠瑡牬攮猠獒?慬湥摳?獯瑦爠敮獩獴?捩潣洠扯楸湩慤瑥椠潩湮嬠?嵲??側汨愠湯瑦??潬畡牮湴愠汲??ぴ???????????????㈠????????戠牁?孲??嵵??慵潲?塬???婩桶略???兴?娬栲漰渱朱???攨琳?愺氳?‵並椣琸爲椱挲※漳砸椳搮敛?獰礬渦璠棌愬獨攸?洬敉搮椠愀琧攖搮?攍慩爹泻礟?滑榲瓇爋椭掄?漨研楶擛敕?扊畝爮猠瑎?憜氚氧敦癦榥愬琲攰猱?眬愳琰攨爳?猺琳爷攵猦猣?椲渱搲画挳攸搳?潝砼楢摲愾瑛椲瘸敝?摇慵浰慴条攠?椠湊?慆浥浲潮湩楥甠流??猬畋灡灩汳楥敲搠?爠楍挬敥?爠潡潬琮猠孏?崠??????偩汧慩湮瑳??楦漠汮潩杴祲????????????ㄠご???扤牳?孩??嵐?坡慮湴朠??????潥甬′?????椶?夳?攺琱?愰氦??串椱琲爻椱挶?漮砼楢摲放?洲改摝椠慓瑡敨摡?挠祓琬潇獵潰汴楡挠?朮氠畁据漠獵数???灥栠潯獮瀠桮慩瑴敲?摣攠桯祸摩牤潥朠敡湮慤猠敩?楳猠?楥湮癩潧汮瘠敲摯?楥渠?慮氠異浬楡湮畴洠?瑥潳硰楯据楳瑥祳?潵普?獥潲礠扭敥慴湡?甠湳摴敲牥?桳楛杊桝?愠汎畩浴楲湩畣洠?捸潩湤捥攬渲琰爱愷琬椶漷渺嬳?崦??倲氱愲渻琵′愮渼摢?匾潛椳氰?㈠す???????ㄠ?水?????????㈠?????扳牵?孯?は崠??愠楌獩数物?圠????牸敩湤摡汴敩??攠桉湳椠獡据栠?????挠楓摹?扰慴獯敭?浔潲摩畧汧慥瑲楥潤渠?潹映?湬極瑭物慮瑵敭?牂敵摴甠捎瑯慴猠整?楥渠?汲敩慭晡?瑹椠獃獡畵敳獥嬠?嵦??偬汯慮湧瑡慴?????????????????㈠??????扯牴?孛??崮??敬牡牮慴爠楐?呹???噬慯牧湹攬爲‰????′?渨琱愩挺琱?琹椦猣猸甲攱′愻猲猰愸礮?晢潲爾?渳椱瑝爠楂瑲敡?牦敯摲畤挠瑍愠獍攮?楁渠?扡慰物汤攠祡?慤氠敳略牮潳湩整?汶慥礠敭牥獴孨?嵤??偯汲愠湴瑨?倠桱祵獡楮潴汩潴条祴??????????????ち???????????s of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1/2):248–254.
    [32] Araki R,Kousaka K,Namba K,et al. 2'‐Deoxymugineic acid promotes growth of rice(Oryza sativa L.)by orchestrating iron and nitrate uptake processes under high pH conditions[J]. Plant Journal,2015,81(2):233—246.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙黎明,马建锋,沈仁芳.硝酸还原酶合成的NO通过诱导酸敏感水稻根尖ROS积累引起酸毒[J].土壤学报,2023,60(1):201-211. DOI:10.11766/trxb202102070085 SUN Liming, MA Jianfeng, SHEN Renfang. Low pH Stress Induces the Accumulation of ROS by Increasing Production of Nitrate Reductase-Dependent NO in Rice Root Tips[J]. Acta Pedologica Sinica,2023,60(1):201-211.

复制
分享
文章指标
  • 点击次数:453
  • 下载次数: 1777
  • HTML阅读次数: 1667
  • 引用次数: 0
历史
  • 收稿日期:2021-02-07
  • 最后修改日期:2021-04-20
  • 录用日期:2021-06-11
  • 在线发布日期: 2021-06-15
文章二维码