场地土壤环境承载力估算及其在土壤污染修复目标值确定中的应用
作者:
中图分类号:

X26;X825

基金项目:

国家重点研发计划项目(2021YFC1809100)和国家自然科学基金项目(72104231)资助


Estimation of Soil Environmental Carrying Capacity and Its Application in the Determination of Remediation Target in Contaminated Sites
Author:
Fund Project:

Supported by the National Key R&D Program of China (No. 2021YFC1809100) and the National Natural Science Foundation of China (No. 72104231)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤环境承载力研究是“土十条”中加强土壤污染防治研究的重要内容,在场地土壤污染修复目标值确定方法中耦合土壤环境承载力的估算模型能够极大地提升修复目标值制定的科学性。以江苏省某市废弃化工场地为研究对象,针对场地土壤中的三种主要污染物汞、六氯苯和氯苯,通过场地土壤布点采样分析,进行了污染物浓度空间分布特征分析和健康风险评价,并基于土壤环境承载力计算公式进行了三类目标污染物的土壤环境承载力和修复目标值的估算。研究结果表明,目标场地土壤中汞和六氯苯浓度超过筛选值的样点占到总样点的50%以上,而氯苯浓度超过筛选值的样点占到了总样点的17%,其空间分布主要受生产过程中的污染源的分布及生产工艺影响;土壤汞和氯苯存在较为严重的非致癌风险,而六氯苯存在严重的致癌风险;以风险筛选值作为环境质量标准的一般情景下的三种污染物的土壤环境承载力均有样点出现了小于0,即超过承载力的现象;以风险管控值为环境质量标准的乐观情景下,该三种污染物的环境承载力均大于0,即该区域还具备继续吸纳污染物的能力;基于土壤环境承载力估算模型的修复目标值较对应的风险筛选值和管控值均高出1.8倍~1.9倍,这是由于在承载力估算模型中对风险产生过程以及土壤对污染物吸附固定过程进行了系数校正的原因。以上研究结果为污染物的土壤环境承载力研究的发展及应用提供了思路和技术方法。

    Abstract:

    Objective It is important to study the soil environmental carrying capacity for soil pollution prevention and control in "The Action Plan for Prevention and Treatment of Soil Pollution". Application of the estimation model of soil environmental carrying capacity could greatly improve the science content of the method of remediation target determination.Method Taking an abandoned chemical site in Jiangsu Province as a case study, the spatial distribution and health risk assessment of three target pollutants (i.e. mercury, hexachlorobenzene, and chlorobenzene) were analyzed based on soil sampling and investigation in the site. The environmental carrying capacities and remediation target values for the pollutants were estimated using the soil environmental carrying capacity model.Result The results revealed that more than half of the sites had soil mercury and hexachlorobenzene excessing their risk screening values, with about 17% for chlorobenzene. The spatial distributions of all three pollutants were mainly dependent on the distribution of the sources and manufacturing processes. Importantly, a serious non-carcinogenic risk is suggested for mercury and chlorobenzene, while a serious carcinogenic risk for hexachlorobenzene. Results of the soil environmental carrying capacity estimation suggested that, under a normal scenario and taking the risk screening value as soil quality standard, there were areas in the site having an environmental carrying capacity for all three pollutants less than zero. This indicated that the contamination of those areas excessed the soil environmental carrying capacities. Under an optimistic scenario and taking the risk controlling value as soil quality standard, the whole site had environmental carrying capacities for all three pollutants greater than zero. This suggested that the site can contain more pollutants.Conclusion The remediation target values calculated by the soil carrying capacity estimation model were 1.8 to 1.9 times higher than the corresponding risk screening and control values. This was due to the coefficient calibration during the processes of risk emergence, soil adsorption, and fixation of pollutants in the carrying capacity model. The results in this study can provide scientific and technical support for the development and application of soil environmental carrying capacity.

    参考文献
    [1] Li X N, Ding S K, Chen W P, et al. Construction and application of an evaluation system for soil environmental carrying capacity[J]. Environmental Science, 2020, 41(5):2373-2380.李笑诺,丁寿康,陈卫平,等.土壤环境承载力评价体系构建与应用[J].环境科学, 2020, 41(5):2373-2380.
    [2] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33.
    [3] Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry, 2014(5):10-11.环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业, 2014(5):10-11.
    [4] HJ 25.4-2019, Technical guidelines for soil remediation of land for construction[S]. HJ 25.4-2019,建设用地土壤修复技术导则[S].
    [5] HJ 25.3-2019, Technical guidelines for risk assessment of contaminated site[S]. HJ 25.3-2019,建设用地土壤污染风险评估技术导则[S].
    [6] GB366000-2018, Soil environment quality risk control standard soil contamination of development land[S]. GB 366000-2018,土壤环境质量建设用地土壤污染风险管控标准(试行)[S].
    [7] Liu M, Liu F Z, Liu B F. Determination of available lead and cadmium in soil[J]. Journal of Agro-Environment Science, 2007, 26(S1):300-302.刘铭,刘凤枝,刘保峰.土壤中有效态铅和镉的测定[J].农业环境科学学报, 2007, 26(S1):300-302.
    [8] Chojnacka K, Chojnacki A, Górecka H, et al. Bioavailability of heavy metals from polluted soils to plants[J]. Science of the Total Environment, 2005, 337(1/2/3):175-182.
    [9] Wang X, Zhou Q X. Distribution of forms for cadmium, lead, copper and zinc in soil and its in fluences by modifier[J]. Journal of Agro-Environmental Science, 2003, 22(5):541-545.王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响[J].农业环境科学学报, 2003, 22(5):541-545.
    [10] Yin Y J, Allen H E, Li Y M, et al. Adsorption of mercury (II) by soil:Effects of pH, chloride, and organic matter[J]. Journal of Environmental Quality, 1996, 25(4):837-844.
    [11] Jing Y D. Physicochemical and microbial characterization of mercury contamination in soils[D]. Hangzhou:Zhejiang University, 2007.荆延德.土壤汞污染的物理化学行为及其微生物学特征[D].杭州:浙江大学, 2007.
    [12] Li S X, Li B, Wang D Y. Effect of humus on the shift of mercury from the soil to the plants[J]. Journal of Southwest Agricultural University, 2002, 24(4):378-380.李士杏,李波,王定勇.腐殖酸对土壤汞向植株迁移的影响[J].西南农业大学学报, 2002, 24(4):378-380.
    [13] Meili M. The coupling of mercury and organic matter in the biogeochemical cycle-towards a mechanistic model for the boreal forest zone[J]. Water Air&Soil Pollution, 1991, 56(1):333-347.
    [14] Gao H J, Jiang X. Hexachlorobenzene:Its aging characteristic in different soils and accumulation in earthworm[J]. Chinese Journal of Applied Ecology, 2009, 20(3):691-695.郜红建,蒋新.土壤中六氯苯的老化特征及其在蚯蚓体内的富集规律[J].应用生态学报, 2009, 20(3):691-695.
    [15] Chen X, Xia X H, Zhao Y, et al. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China[J]. Journal of Hazardous Materials, 2010, 181(1/2/3):640-646.
    [16] Cui Y J, Zhu Y G, Zhai R H, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China[J]. Environment International, 2004, 30(6):785-791.
    [17] Peng C. Simulation of accumulation process of heavy metals and polycyclic aromatic hydrocarbons in urban soil[D]. BeiJing:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2013.彭驰.城市土壤重金属与多环芳烃累积过程模拟[D].北京:中国科学院生态环境研究中心, 2013.
    [18] Cai M F, Liu Y R, Dang Z. Advances in phytoremediation of heavy metal contaminated soils[J]. Chongqing Environmental Science, 2003(11):174-176, 180.蔡美芳,刘玉荣,党志.植物修复重金属污染土壤的研究进展[J].重庆环境科学, 2003(11):174-176, 180.
    [19] Tang S R. Principles and methods of phytoremediation of polluted environment[M]. Beijing:Science Press, 2006.唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社, 2006.
    [20] Zhang Z. Microbiology of polluted environment[M]. Kunming:Yunnan University Press, 1997.张灼.污染环境微生物学[M].昆明:云南大学出版社, 1997.
    [21] Li M, Hou Y L, Pi G J. Ecological remediation of microflora in mercury polluted soil[J]. Ecology and Environment, 2004, 13(4):560-564.李梅,侯彦林,皮广洁.施肥及种植作物对汞污染土壤中微生物生态的修复[J].生态环境, 2004, 13(4):560-564.
    [22] Tam N F Y, Wong Y S. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons[J]. Marine Pollution Bulletin, 2008, 57(6/7/8/9/10/11/12):716-726.
    [23] Gao Y Z, Zhu L Z. Plant uptake, accumulation and translocation of phenanthrene and Pyrene in soils[J]. Chemosphere, 2004, 55(9):1169-1178.
    [24] Lin H, Tao S, Zuo Q, et al. Uptake of polycyclic aromatic hydrocarbons by maize plants[J]. Environmental Pollution, 2007, 148(2):614-619.
    [25] Watts A W, Ballestero T P, Gardner K H. Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments[J]. Chemosphere, 2006, 62(8):1253-1260.
    [26] Gillman G P, Bruce R C, Davey B G, et al. A comparison of methods used for determination of cation exchange capacity[J]. Communications in Soil Science and Plant Analysis, 1983, 14(11):1005-1014.
    [27] Nam J J, Thomas G O, Jaward F M, et al. PAHs in background soils from Western Europe:Influence of atmospheric deposition and soil organic matter[J]. Chemosphere, 2008, 70(9):1596-1602.
    [28] Ellingsen D G, Andersen A, Nordhagen H P, et al. Incidence of cancer and mortality among workers exposed to mercury vapour in the Norwegian chloralkali industry[J]. British Journal of Industrial Medicine, 1993, 50(10):875-880.
    [29] Kazantzis G. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis[J]. Environmental Health Perspectives, 1981, 40:143-161.
    [30] Guettouche A, Kaoua F. Using a GIS to assessment the load-carrying capacity of soil case of berhoum area, hodna basin,(eastern Algeria)[J]. Journal of Geographic Information System, 2013, 5(5):492-497.
    [31] Khanif Y M. Improvement of soil carrying capacity for better living[J]. Journal Issaas, 2010, 16(1):1-7.
    [32] Lane M. The carrying capacity imperative:Assessing regional carrying capacity methodologies for sustainable land-use planning[J]. Land Use Policy, 2010, 27(4):1038-1045.
    [33] Hui C. Carrying capacity of the environment[M]//International Encyclopedia of the Social& Behavioral Sciences. Amsterdam:Elsevier, 2015:155—160.
    [34] Peters C J, Picardy J, Darrouzet-Nardi A F, et al. Carrying capacity of US agricultural land:Ten diet scenarios[J]. Elementa Science of Anthropocene, 2016, 4:116. https://doi.org/10.12952/journal.elementa.000116.
    [35] USDA Natural Resources Conservation Service (NRCS). Soil quality for environmental health[EB/OL]. http://www.soilquality.org/home.html.
    [36] Mason R P. Mercury emissions from natural processes and their importance in the global mercury cycle. Mercury fate and transport in the global atmosphere, 2009:173—191. https://doi.org/10.1007/978-0-387-93958-2_7.
    [37] Barber J L, Sweetman A J, van Wijk D, et al. Hexachlorobenzene in the global environment:Emissions, levels, distribution, trends and processes[J]. Science of the Total Environment, 2005, 349(1/2/3):1-44.
    [38] Wang M E, Faber J H, Chen W P, et al. Effects of land use intensity on the natural attenuation capacity of urban soils in Beijing, China[J]. Ecotoxicology and Environmental Safety, 2015, 117:89-95.
    [39] Xie T, Wang M E, Su C, et al. Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods[J]. Environmental Pollution, 2018, 238:222-229.
    [40] Sauvé S, Hendershot W, Allen H E. Solid-solution partitioning of metals in contaminated soils:Dependence on pH, total metal burden, and organic matter[J]. Environmental Science&Technology, 2000, 34(7):1125-1131.
    [41] Liao Q L, Liu C, Xu Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 2011, 38(5):1363-1378.廖启林,刘聪,许艳,等.江苏省土壤元素地球化学基准值[J].中国地质, 2011, 38(5):1363-1378.
    [42] Chao L. Methodelogy and case study of enacting benchmarks for remediation of contaminated soils and its effectivity assessment[D]. Shenyang:Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 2007.晁雷.污染土壤修复基准建立的方法体系、案例研究与评价[D].沈阳:沈阳应用生态研究所, 2007.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁寿康,王美娥,王玉军,李笑诺,陈卫平.场地土壤环境承载力估算及其在土壤污染修复目标值确定中的应用[J].土壤学报,2022,59(6):1561-1573. DOI:10.11766/trxb202102090088 DING Shoukang, WANG Meie, WANG Yujun, LI Xiaonuo, CHEN Weiping. Estimation of Soil Environmental Carrying Capacity and Its Application in the Determination of Remediation Target in Contaminated Sites[J]. Acta Pedologica Sinica,2022,59(6):1561-1573.

复制
分享
文章指标
  • 点击次数:427
  • 下载次数: 1764
  • HTML阅读次数: 1641
  • 引用次数: 0
历史
  • 收稿日期:2021-02-09
  • 最后修改日期:2021-09-07
  • 录用日期:2021-10-20
  • 在线发布日期: 2022-01-07
文章二维码