冻融循环和土壤含水率对棕壤崩解特性的影响
作者:
中图分类号:

S151.7

基金项目:

国家自然科学基金项目(41601284)、国家重点研发计划项目(2016YFE0202900)和辽宁省教育厅科学研究项目(LSNQN202023)资助


Effects of Freeze-thaw Cycles and Soil Water Contents on Disintegration Characteristics of Brown Earth
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 41601284),the National Key Research and Development Program of China (No. 2016YFE0202900),and the Science Research Project of Education Department of Liaoning(No. LSNQN202023)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以沈阳地区5~7 cm和25~27 cm 2个深度原状棕壤为研究对象,分析冻融循环次数和土壤含水率对棕壤崩解特性的影响。根据气象数据结合野外观测结果,共设计了5个冻融循环次数。控制土样质量含水率分别为10%、15%、20%、25%和35%。采用静水崩解,通过数显拉力计及测量软件测定崩解过程。结果表明:(1)棕壤崩解具有阶段性,包括快速吸水阶段、指数崩解阶段、阶跃崩解阶段和崩解完成阶段。其中指数崩解阶段是崩解过程的主要发生阶段,土样因拉扯或失去支撑接连崩落。该阶段的崩解速率和非毛管含水率对冻融循环次数的响应规律一致。根据拟合曲面,10%~15%的含水率区间存在最易崩解含水率,其最终崩解率最大。当土样含水率为25%和35%时,土样会跳过指数崩解过程直接进入阶跃崩解阶段。含水率35%条件下,5~7 cm和25~27 cm土样的最终崩解率很小,不超过6.93%和11.14%。(2)冻融作用会对含水率为10%和15%土样产生超固结效应,加速土壤孔隙的两极化分布,土样指数崩解阶段的崩解速率和非毛管含水率,最终在多次冻融后增加。冻融作用也会对含水率为25%和35%土样结构产生影响,扩张土壤孔隙造成内部沉降,以及降低吸水能力。土样指数崩解阶段的崩解速率和非毛管含水率,最终在多次冻融后减小。(3)25~27 cm土样孔隙差异性略大,较高的黏粒含量抑制了双电层对自由水的控制能力,最终崩解率偏高。冻融作用可将土壤抵抗由内到外发生侵蚀的能力,转化为抵抗由外到内发生侵蚀的能力。研究结果可为棕壤侵蚀研究提供数据支撑。

    Abstract:

    【Objective】 Undisturbed brown earth soils from 5~7 cm and 25~27 cm depths in the Shenyang area of China were collected for this research. The effects of freeze-thaw cycles and soil water contents on the disintegration characteristics of the soils were analyzed. 【Method】 Based on meteorological data and field observation, five freeze-thaw cycles were designed. The weighed water contents of the soil samples were regulated to 10%, 15%, 20%, 25% and 35%, respectively, and the disintegration process was measured. 【Result】 1) The soil disintegration had four phases, including the rapid water absorption phase, exponential disintegration phase, step disintegration phase, and disintegration completion phase. In the four phases, the exponential disintegration phase was regarded as the main disintegration process. Importantly, during the exponential disintegration phase, the soil sample collapsed continuously due to pulling or losing support. Also, the disintegration rate in the exponential disintegration phase and non-capillary water content showed similar behavior as the increasing freeze-thaw cycle. According to the two fitting surfaces, there was a most easily disintegrating soil water content in the range10%~15% in which the total disintegration rate was largest. When the water contents were 25% and 35%, all soil samples skipped the exponential disintegration phase and directly entered the step disintegration phase. The total disintegrations of 5~7 cm and 25~27 cm soils were very small under 35% soil water content, and was no more than 6.93% and 11.14%, respectively. 2) Over-consolidation was observed on soil samples with 10% and 15% water contents, and the polarization distribution of soil pores was accelerated under the freeze-thaw cycles. The disintegration rate of the exponential disintegration phase and non-capillary water content of both soil samples was increased after continuous freeze-thaw cycles. Under the freeze-thaw cycles, the structure of soil samples with 25% and 35% water contents was destroyed, soil pores were expanded with an internal settlement, and the water absorption capacity was reduced. 3) The pore difference of 25~27 cm soil sample was slightly larger, the control ability of electric double layer to free water was inhibited by the higher clay content, which resulted in a higher total disintegration rate. 【Conclusion】 The ability of soil to resist erosion from inside to outside was transformed into the ability from outside to inside under freeze-thaw cycles. All the findings may serve as a data basis for brown earth soil erosion research.

    参考文献
    [1] Chen X,Zhang X D,Yu W T,et al. Efficient management on soil and fertilizer to promote sustainable development of local agro-ecosystems in Liaohe plain,China[J]. Bulletin of Chinese Academy of Sciences,2018,33(9):992-999.[陈欣,张旭东,宇万太,等. 坚持土肥高效管理 促进区域农田生态系统可持续发展[J]. 中国科学院院刊,2018,33(9):992—999.]
    [2] Sun B Y,Wu Z G,Li Z B,et al. Effects of freeze-thaw on soil detachment capacity and erosion resistance[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(11):57—65.[孙宝洋,吴志广,李占斌,等. 冻融对土壤分离能力及侵蚀阻力的影响[J]. 农业工程学报,2020,36(11):57—65.]
    [3] Liu B Y,Zhang G L,Xie Y,et al. Delineating the black soil region and typical black soil region of northeastern China[J]. Chinese Science Bulletin,2021,66(1):96—106.[刘宝元,张甘霖,谢云,等. 东北黑土区和东北典型黑土区的范围与划界[J]. 科学通报,2021,66(1):96—106.]
    [4] Chen T D,Jiao J Y,Wang H L,et al. Progress in research on soil erosion in Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica,2020,57(3):547—564.[陈同德,焦菊英,王颢霖,等. 青藏高原土壤侵蚀研究进展[J]. 土壤学报,2020,57(3):547—564.]
    [5] Jin W P,Fan H M,Liu B,et al. Effects of freeze-thaw cycles on aggregate stability of black soil[J]. Chinese Journal of Applied Ecology,2019,30(12):4195—4201.[金万鹏,范昊明,刘博,等. 冻融交替对黑土团聚体稳定性的影响[J]. 应用生态学报,2019,30(12):4195—4201.]
    [6] Jiang Y,Liu B,Fan H M,et al. Macropore structure characteristics of black soil under freeze-thaw condition[J]. Acta Pedologica Sinica,2019,56(2):340—349.[姜宇,刘博,范昊明,等. 冻融条件下黑土大孔隙结构特征研究[J]. 土壤学报,2019,56(2):340—349.]
    [7] Liu J,Fan H M,Zhou L L,et al. Study on effects of freeze-thaw cycle on bulk density and porosity of black soil[J]. Journal of Soil and Water Conservation,2009,23(6):186—189.[刘佳,范昊明,周丽丽,等. 冻融循环对黑土容重和孔隙度影响的试验研究[J]. 水土保持学报,2009,23(6):186—189.]
    [8] Gu G H,Fan H M,Jia Y F,et al. Study on disintegration of brown soil in spring thawing period[J]. Soil and Water Conservation in China,2014(12):45—48.[顾广贺,范昊明,贾燕锋,等. 春季解冻期棕壤崩解性研究[J]. 中国水土保持,2014(12):45—48.]
    [9] Wang L,Zuo X F,Zheng F L,et al. The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region[J]. Catena,2020,193:104615.
    [10] Zhu L X,Fan H M,Guo C J,et al. Effect of freeze-thaw cycles on shear strength of undisturbed brown soil[J]. Journal of Soil and Water Conservation,2021,35(2):55—60,67.[朱龙祥,范昊明,郭成久,等. 冻融作用对原状棕壤抗剪强度的影响[J]. 水土保持学报,2021,35(2):55—60,67.]
    [11] Li J H,Zhang Q G,Sun X,et al. Effect of bonding and void ratio on the mechanical behavior of structured soil[J]. Journal of Tsinghua University(Science and Technology),2008,48(9):1431—1435.[李建红,张其光,孙逊,等. 胶结和孔隙比对结构性土力学特性的影响[J]. 清华大学学报(自然科学版),2008,48(9):1431—1435.]
    [12] Zhu X M,Zhang X L,Lei W J. Phenomenon and evolution of soil erosion in Jinghe river basin[J]. Acta Pedologica Sinica,1954,2(4):209—222.[朱显谟,张相麟,雷文进. 泾河流域土壤侵蚀现象及其演变[J]. 土壤学报,1954,2(4):209—222.]
    [13] Li Q,Zhang Z,Sun H,et al. A new modified method for calculation of soil disintegration rate[J]. Research of Soil and Water Conservation,2015,22(6):344—348.[李强,张正,孙会,等. 土壤崩解速率的一种修正方法[J]. 水土保持研究,2015,22(6):344—348.]
    [14] Zhang Z,Vadim P,Svetlana N,et al. Disintegration characteristics of a cryolithogenic clay loam with different water content:Moscow covering loam(prQIII),case study[J]. Engineering Geology,2019,258:105159.
    [15] Wang N Q,Xue Y Q,Wei J R. Development and application of loessal disintegrating instrument in steady flow[J]. Soil and Water Conservation in China,2015(1):55—57,69.[王念秦,薛瑶琼,魏精瑞. 黄土体稳流崩解仪的研制与应用[J]. 中国水土保持,2015(1):55—57,69.]
    [16] Yang X F. Growth characteristics of sloping grop roots and its effects on runoff and sediments[D]. Yangling,China:Northwest A & F University,2012.[杨晓芬. 坡耕地玉米作物根系对土壤侵蚀的影响研究[D]. 杨凌:西北农林科技大学,2012.]
    [17] Jiang D S,Li X H,Fan X K,et al. Research on the law of soil disintegration rate change and it's effect factors on the loess plateau[J]. Bulletin of Soil and Water Conservation,1995,15(3):20—27.[蒋定生,李新华,范兴科,等. 黄土高原土壤崩解速率变化规律及影响因素研究[J]. 水土保持通报,1995,15(3):20—27.]
    [18] Yuan K K,Dang J Q,Wang Z K,et al. Experimental study on hydraulic properties of compacted loess[J]. Yangtze River,2009,40(20):34—37.[袁克阔,党进谦,王自奎,等. 压实黄土水理特性试验研究[J]. 人民长江,2009,40(20):34—37.]
    [19] Zhang X Y,Fan H M,Yang X Z,et al. Effects of soil bulk density and water content on hydrostatic disintegration rate of sandy clay loam[J]. Acta Pedologica Sinica,2013,50(1):214—218.[张晓媛,范昊明,杨晓珍,等. 容重与含水率对砂质黏壤土静水崩解速率影响研究[J]. 土壤学报,2013,50(1):214—218.]
    [20] Li J W,Chen L,Shi D M,et al. Response characteristics of purple soil disintegrating characteristics to bulk densities and water contents[J]. Journal of Soil and Water Conservation,2019,33(2):68—72,78.[李敬王,陈林,史东梅,等. 紫色土崩解特性对容重和含水率的响应特征[J]. 水土保持学报,2019,33(2):68—72,78.]
    [21] Zhang Z,Ma W,Pendin V V,et al. Experimental study of the disintegration characteristics of loam with different moisture content[J]. Hydrogeology & Engineering Geology,2014,41(4):104—107,124.[张泽,马巍,PENDIN Vadim V,等. 不同含水量亚黏土的崩解特性实验研究[J]. 水文地质工程地质,2014,41(4):104—107,124.]
    [22] Liu Z F. Study on disintegration mechanism of variegated clay[D]. Xi'an:Northwest University,2020.[刘战峰. 杂色粘土崩解机理研究[D]. 西安:西北大学,2020.]
    [23] Liu C W,Lu S L. Research on mechanism of mudstone degradation and softening in water[J]. Rock and Soil Mechanics,2000,21(1):28—31.[刘长武,陆士良. 泥岩遇水崩解软化机理的研究[J]. 岩土力学,2000,21(1):28—31.]
    [24] Zheng Y,Ma W,Bing H. Impact of freezing and thawing cycles on the structures of soil and a quantitative approach[J]. Journal of Glaciology and Geocryology,2015,37(1):132—137.[郑郧,马巍,邴慧. 冻融循环对土结构性影响的机理与定量研究方法[J]. 冰川冻土,2015,37(1):132—137.]
    [25] Dagesse D F. Freezing-induced bulk soil volume changes[J]. Canadian Journal of Soil Science,2010,90(3):389—401.
    [26] Zhang Z,Ma W,Qi J L. Structure evolution and mechanism of engineering properties change of soils under effect of freeze-thaw cycle[J]. Journal of Jilin University(Earth Science Edition),2013,43(6):1904—1914.[张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版),2013,43(6):1904—1914.]
    [27] Yang C S,He P,Cheng G D,et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(S2):2695—2699.[杨成松,何平,程国栋,等. 冻融作用对土体干容重和含水量影响的试验研究[J]. 岩石力学与工程学报,2003,22(S2):2695—2699.]
    [28] Shen R F,Yan X Y,Zhang G L,et al. Status quo of and strategic thinking for the development of soil science in China in the new era[J]. Acta Pedologica Sinica,2020,57(5):1051—1059.[沈仁芳,颜晓元,张甘霖,等. 新时期中国土壤科学发展现状与战略思考[J]. 土壤学报,2020,57(5):1051—1059.]
    [29] Li C S,An R,Shu R J,et al. Initial-disintegration analysis of granite residual soil and approximate simulation of mathematical morphology[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):845—854.[黎澄生,安然,舒荣军,等. 花岗岩残积土初期崩解规律与数学形态学方法近似模拟[J]. 岩石力学与工程学报,2020,39(4):845—854.]
    [30] Liu W C,Yang G Q,Xiong B L,et al. Research on the water-physical property of the low liquid limit silt[J]. Chinese Journal of Underground Space and Engineering,2015,11(4):926—932.[刘伟超,杨广庆,熊保林,等. 低液限粉土水理特性试验研究[J]. 地下空间与工程学报,2015,11(4):926—932.]
    [31] Wu C W,Wang L X. The analysis on the water storage properties of soil pore in forested land[J]. Research of Soil and Water Conservation,1995,2(1):76—79.[吴长文,王礼先. 林地土壤孔隙的贮水性能分析[J]. 水土保持研究,1995,2(1):76—79.]
    [32] Qiao G W,Wang Y S,Chu F,et al. Failure mechanism of slope rock mass due to freeze-thaw weathering[J]. Journal of Engineering Geology,2015,23(3):469—476.[乔国文,王运生,储飞,等. 冻融风化边坡岩体破坏机理研究[J]. 工程地质学报,2015,23(3):469—476.]
    [33] Gan M. The heterogeneity of soil water retention capacity and its controlling mechanism across A slope-gully system[D]. Shenyang:Shenyang Agricultural University,2019.[甘淼. 坡沟系统土壤持水特性分异机制[D]. 沈阳:沈阳农业大学,2019.]
    [34] Xu J. Comparative study on the field capacity based on different test methods[D]. Changchun:Jilin University,2018.[许静. 不同试验方法测定田间持水量的对比研究[D]. 长春:吉林大学,2018.]
    [35] Liu Q J,An J,Zhang G H,et al. The effect of row grade and length on soil erosion from concentrated flow in furrows of contouring ridge systems[J]. Soil and Tillage Research,2016,160:92—100.
    [36] Wang J,Ma F,Zhang P H,et al. Effect of wet-dry alternation on loess disintegration rate[J]. Acta Pedologica Sinica,2015,52(6):1273—1279.[王健,马璠,张鹏辉,等. 干湿交替对黄土崩解速度的影响[J]. 土壤学报,2015,52(6):1273—1279.]
    [37] Zhang S,Tang H M. Experimental study of disintegration mechanism for unsaturated granite residual soil[J]. Rock and Soil Mechanics,2013,34(6):1668—1674.[张抒,唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学,2013,34(6):1668—1674.]
    [38] Li X A,Huang R Q,Peng J B. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):3207—3213.[李喜安,黄润秋,彭建兵. 黄土崩解性试验研究[J]. 岩石力学与工程学报,2009,28(S1):3207—3213.]
    [39] Su Q,Tang D J,Liu S. Test on physico-mechanical properties of Qinghai—Tibet slope clay under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):2990—2994.[苏谦,唐第甲,刘深. 青藏斜坡黏土冻融循环物理力学性质试验[J]. 岩石力学与工程学报,2008,27(S1):2990—2994.]
    [40] Carroll C,Merton L,Burger P. Impact of vegetative cover and slope on runoff,erosion,and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines[J]. Soil Research,2000,38(2):313—327.
    [41] Liu B,Ma R M,Fan H M. Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X-ray computed tomography[J]. Soil and Tillage Research,2021,206:104810.
    [42] Qi J L,Ma W,Song C X. Influence of freeze-thaw on engineering properties of a silty soil[J]. Cold Regions Science and Technology,2008,53(3):397—404.
    [43] Dong X H,Zhang A J,Lian J B,et al. Laboratory study on shear strength deterioration of loess with long-term freezing-thawing cycles[J]. Journal of Engineering Geology,2010,18(6):887—893.[董晓宏,张爱军,连江波,等. 长期冻融循环引起黄土强度劣化的试验研究[J]. 工程地质学报,2010,18(6):887—893.]
    [44] Fan H M,Li G Y,Zhou L L,et al. Effect of freeze-thaw on physical and mechanical properties of meadow soil[J]. Journal of Shenyang Agricultural University,2011,42(1):114—117.[范昊明,李贵圆,周丽丽,等. 冻融作用对草甸土物理力学性质的影响[J]. 沈阳农业大学学报,2011,42(1):114—117.]
    [45] Ma R M,Jiang Y,Liu B,et al. Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles[J]. Soil and Tillage Research,2021,207:104855.
    [46] Zhao X G,Shi H. Prescription of soil anti-erosion capability under water erosion[J]. Arid Land Geography,2003,26(1):12—16.[赵晓光,石辉. 水蚀作用下土壤抗蚀能力的表征[J]. 干旱区地理,2003,26(1):12—16.]
    [47] Ferrero A,Lipiec J,Turski M,et al. Stability and sorptivity of soil aggregates in grassed and cultivated sloping vineyards[J]. Polish Journal of Soil Science,2007,40(1):1—8.
    [48] Tang D X,Liu Y R,Zhang W S,et al. Engineering geotechnical[M]. Beijng:Geological Publishing House,1999.[唐大雄,刘佑荣,张文殊,等. 工程岩土学[M]. 北京:地质出版社,1999.]
    [49] Ma R T,Hu F N,Liu J F,et al. Evolution of soil surface electrochemical characteristics with vegetation restoration on loess plateau in Ziwuling area[J]. Acta Pedologica Sinica,2020,57(2):392—402.[马任甜,胡斐南,刘婧芳,等. 黄土高原植被恢复过程中土壤表面电化学性质演变特征[J]. 土壤学报,2020,57(2):392—402.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱龙祥,范昊明,马仁明.冻融循环和土壤含水率对棕壤崩解特性的影响[J].土壤学报,2023,60(1):77-88. DOI:10.11766/trxb202103020119 ZHU Longxiang, FAN Haoming, MA Renming. Effects of Freeze-thaw Cycles and Soil Water Contents on Disintegration Characteristics of Brown Earth[J]. Acta Pedologica Sinica,2023,60(1):77-88.

复制
分享
文章指标
  • 点击次数:466
  • 下载次数: 1859
  • HTML阅读次数: 1483
  • 引用次数: 0
历史
  • 收稿日期:2021-03-02
  • 最后修改日期:2021-08-17
  • 录用日期:2021-10-13
  • 在线发布日期: 2021-10-14
文章二维码