石灰性水稻土中硝酸盐依赖型与光合型亚铁氧化过程
作者:
基金项目:

国家自然科学基金项目(U1904121,41601309)资助


Nitrate-Dependent and Photosynthetic Fe(II) Oxidation Processes in a Calcareous Paddy Soil
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (Nos. U1904121 and 41601309)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    厌氧条件下土壤中铁氧化还原过程与土壤氮循环关系密切,且硝酸盐依赖型亚铁氧化(nitrate-dependent ferrous oxidation,NDFO)和光合型亚铁氧化(photosynthetic ferrous oxidation,PFO)是亚铁氧化的两个重要的生物途径,然而目前关于石灰性水稻土中NDFO与PFO之间的关系仍不明晰。以采自黄河中下游地区河南省孟津县的水稻土为样品,设置培养前添加和培养过程中添加10 mmol·L-1的硝酸根离子/铵离子(NO3-/NH4+)的恒温厌氧泥浆培养试验,通过监测泥浆中Fe (II)、O2、NO3-和亚硝酸根离子(NO2-)的动态变化与培养后的NH4+含量探究了NO3-在石灰性水稻土Fe(II)氧化过程的作用及其与光合型亚铁氧化的关系。结果表明:避光条件下石灰性水稻土中存在NDFO,但产生的Fe(III)可在NO3-消耗殆尽时被再次还原而掩盖Fe (II)氧化现象。光照条件下NDFO和PFO可同时存在,PFO可致1.99 mg·g-1 Fe (II)氧化,NO3-的加入可使Fe(II)氧化量增加0.57 mg·g-1。光照可抑制NO3-的还原而抑制NDFO。研究结果对于进一步理解湿地铁的氧化还原及其耦合的氮素转化过程有重要意义。

    Abstract:

    【Objective】 Iron redox processes under anaerobic conditions are closely correlated to nitrogen cycling in soils. Both nitrate-dependent ferrous oxidation (NDFO) and photosynthetic ferrous oxidation (PFO) are crucial pathways of biological ferrous iron oxidation. However, whether NDFO occurs in calcareous paddy soils and its relation to PFO is still ambiguous.【Method】 Soil samples were collected from Mengjin County, Henan Province, within the middle and lower reaches of the Yellow River. The soil samples were made into slurries using 10 mmol·L-1 NO3-/NO4+ solution or water at the very beginning. Then the slurries were anaerobically incubated under darkness or illuminated. On the 7th day of the incubation, we injected 0.5 mL 70 mmol·L-1 NO3-or NO4+ into a part of those slurries made with water to adjust their external NO3-or NO4+ content to 10 mmol L-1. To assess the iron reduction, and ferrous oxidation, Fe(II) in the slurries was measured dynamically using the phenanthroline colorimetric method. To evaluate the nitrogen transformation, NO3-and NO2-were analyzed dynamically using an ion chromatograph equipped with an electrical conductivity detector, and NO4+ was measured after the incubation by 1 mol·L-1 KCl extraction-Kjeldahl method. To fractionate the PFO, O2 in the headspaces was determined dynamically using a portable fiber-optic trace oxygen meter.【Result】 The results showed that, though no apparent ferrous oxidation was observed, iron reduction rate decreased by 0.28 mg·g-1·d-1 and 0.33 mg·g-1·d-1. Also, the iron reduction rate constant was decreased by 0.15 d-1, and 0.17 d-1 in slurries under darkness with NO3-or NO4+ amended at the very beginning. Ferrous iron was oxidized by 2.21 mg·g-1 and 0.68 mg·g-1 in slurries with NO3-or NO4+ injected on the 7th day of the dark incubation and by 1.99 mg·g-1 in slurries incubated under light. In addition, Fe(II) in the slurries was negatively correlated to O2 in the headspace. Importantly, the reduction of NO3-to NO4+ occurred in the slurries with NO3-injected on the 7th day of dark incubation.【Conclusion】 Ferrous oxidation caused by NDFO was observed in the calcareous paddy soil amended with 10 mmol·L-1 NO3-and incubated anaerobically under darkness. However, the oxidation could be inhibited since the ferric iron resulting from NDFO would be reduced rapidly when the NO3-becomes depleted. Both NDFO and PFO occurred in the calcareous paddy soil incubated under illumination and the PFO resulted in 1.99 mg·g-1 ferrous iron oxidized. Ferrous oxidation in soils under illumination was increased by 0.57 mg·g-1 when NO3-was injected. These results help to further understand the redox processes and the coupled nitrogen transformation in wetland soils.

    参考文献
    [1] Chen C M, Hall S J, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11(1) : 2255.
    [2] Zhang X F, Liu T X, Li F B, et al. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system[J]. Journal of Environmental Sciences, 2021, 100: 90—98
    [3] Yu H Y,Li F B,Liu C S,et al. Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of South China[J]. Advances in Agronomy, 2016, 137: 279—317.
    [4] Wang J B, Zhu Z K, Lin S, et al. Mineralization of goethite-adsorbed and -encapsulated organic carbon and its priming effect in paddy soil[J]. Acta Pedologica Sinica, 2021, 58( 6): 1530—1539. [江家彬,祝贞科, 林森, 等. 针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应[J]. 土壤学报, 2021, 58( 6): 1530—1539.]
    [5] Shelobolina E, Konishi H, Xu H F, et al. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil[J]. Frontiers in Microbiology, 2012, 3: 134.
    [6] Melton E D, Schmidt C, Kappler A. Microbial iron(II) oxidation in littoral freshwater lake sediment : the potential for competition between phototrophic vs. nitrate-reducing iron (II ) -oxidizers[J]. Frontiers in Microbiology, 2012, 3: 197.
    [7] Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10) : 752—764.
    [8] Bryce C, Blackwell N, Schmidt C, et al. Microbial anaerobic Fe(II) oxidation–Ecology, mechanisms and environmental implications[J]. Environmental Microbiology, 2018, 20(10) : 3462—3483.
    [9] Laufer K, Nordhoff M, R?y H, et al. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe (II) oxidizers and Fe(III) reducers in coastal marine sediment [J]. Applied and Environmental Microbiology, 2015, 82(5) : 1433—1447.
    [10] Liu T X, Chen D D, Li X M, et al. Microbially mediated coupling of nitrate reduction and Fe( II) oxidation under anoxic conditions[J]. FEMS Microbiology Ecology , 2019, 95( 4): fiz030.
    [11] Liu T X, Cheng K, Chen D D, et al. Formation of Fe ( Ⅲ ) -minerals by microbially mediated coupling of nitrate reduction and Fe(Ⅱ) oxidation: A review [J]. Ecology and Environmental Sciences, 2019, 28( 3):620-628. [刘同旭,程宽,陈丹丹,等. 微生物介导的硝酸盐还原耦合亚铁氧化成矿研究进展[J]. 生态环境学报, 2019, 28( 3): 620—628.]
    [12] Liu T X, Chen D D, Luo X B, et al. Microbially mediated nitrate-reducing Fe( II) oxidation: Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019, 256: 97—115.
    [13] Benaiges-Fernandez R, Offeddu F G, Margalef-Marti R, et al. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe( II) oxidation in marine environments[J]. Chemosphere , 2020, 260: 127554.
    [14] Cheng B Y, Wang Y, Hua Y M, et al. The performance of nitrate-reducing Fe( II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Frontiers of Environmental Science & Engineering, 2020, 15( 4): 73.
    [15] Hu S W, Liu T X, Li F B, et al. The Abiotic and biotic transformation processes of soil iron-bearing minerals and its interfacial reaction mechanisms of heavy metals: A review[J].Acta Pedologica Sinica, 2022, 59( 1): . [胡世文,刘同旭,李芳柏,等. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 2022, 59( 1): .]
    [16] Swanner E D, Wu W F, Hao L K, et al. Physiology, Fe( II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions[J]. Frontiers in Earth Science, 2015, 3: 60.
    [17] Posth N R, Konhauser K O, Kappler A. Microbiological processes in banded iron formation deposition[J]. Sedimentology, 2013, 60( 7): 1733—1754.
    [18] Thompson K J, Kenward P A, Bauer K W, et al. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans[J]. Science Advances, 2019, 5( 11): eaav2869.
    [19] Wang X G, Sun L R, Chen Z H, et al. Light inhibition of carbon mineralization associated with iron redox processes in calcareous paddy soil[J]. Journal of Soils and Sediments, 2020, 20( 8): 3171—3180.
    [20] Bothe H, Schmitz O, Yates M G, et al. Nitrogen fixation and hydrogen metabolism in cyanobacteria[J]. Microbiology and Molecular Biology Reviews, 2010, 74( 4): 529—551.
    [21] Chen P C , Li X M, Li F B. Shifts of microbial communities during Fe( II) oxidation coupled to nitrate reduction in paddy soil[J]. China Environmental Science. 2017, 37( 1): 358—366. [陈鹏程,李晓敏,李芳柏. 水稻土Fe(Ⅱ)氧化耦合NO3- 还原的微生物变化[J]. 中国环境科学, 2017, 37( 1): 358—366.]
    [22] Deng T C, Qian Y F, Chen X J, et al. Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe ( II)-oxidizing bacterium isolated from ferrous ion-rich sediment[J]. Journal of Microbiology, 2020, 58( 5): 350—356.
    [23] Wang R, Zheng P, Zhang M, et al. Nitrate-dependent anaerobic ferrous/iron oxidation microorganism: Review on its species , distribution and characteristics[J]. Microbiology China. 2015, 42( 12): 2448—2456. [王茹,郑平,张萌,等. 硝酸盐型厌氧铁氧化菌的种类、 分布和特性[J]. 微生物学通报, 2015, 42( 12): 2448—2456.]
    [24] Sun L R, Wang X G, Xu X F, et al. Anaerobic redox of iron oxides and photosynthetic oxidation of ferrous iron in upland cinnamon soils[J]. Acta Pedologica Sinica, 2015, 52( 6): 1291—1300. [孙丽蓉,王旭刚,徐晓峰, 等. 旱作褐土中氧化铁的厌氧还原与光合型亚铁氧化特征[J]. 土壤学报, 2015, 52( 6): 1291—1300.]
    [25] Wang X G, Sun L R, Ma L J, et al. Temperature sensitivity of iron redox processes in wetland soil in the Middle and Lower Reaches of the Yellow River[J]. Acta Pedologica Sinica, 2018, 55( 2): 380—389. [王旭刚, 孙丽蓉,马林娟,等. 黄河中下游湿地土壤铁还原氧化过程的温度敏感性[J]. 土壤学报, 2018, 55( 2): 380—389.]
    [26] Wang X G, Guo D Y, Zhang P, et al. Effect of illumination and water condition on iron redox cycle in paddy soil[J]. Acta Pedologica Sinica, 2014, 51( 4): 853—859. [王旭刚,郭大勇,张苹,等. 水稻土中铁氧化还原循环的光照水分效应[J]. 土壤学报, 2014, 51( 4): 853—859.]
    [27] Sun L R, Wang X G, Guo D Y, et al. Dynamics of anaerobic reduction of iron oxides in upland cinnamon soils[J]. Acta Pedologica Sinica, 2013, 50( 1): 106—112. [孙丽蓉,王旭刚,郭大勇,等. 旱作褐土中铁氧化物的厌氧还原动力学特征[J]. 土壤学报, 2013, 50( 1): 106—112]
    [28] Lu R K. Analytical method for soil and agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社, 2000]
    [29] Wang X G, Sun L R, Zhang Y L, et al. Characterization of reduction of iron oxide and oxidation of ferrous iron in upland cinnamon soil profiles in west Henan, China[J]. Acta Pedologica Sinica, 2018, 55( 5): 1199—1211. [王旭刚,孙丽蓉,张颖蕾,等. 豫西旱作褐土剖面土壤的氧化铁还原与亚铁氧化特征[J]. 土壤学报, 2018, 55( 5): 1199—1211.]
    [30] Li X M, Zhang W, Liu T X, et al. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe ( II)oxidation at circumneutral pH in paddy soil[J]. Soil Biology and Biochemistry, 2016, 94: 70—79.
    [31] Kappler A, Bryce C, Mansor M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19( 6): 360—374.
    [32] Clément J, Shrestha J, Ehrenfeld J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37( 12): 2323—2328.
    [33] Shuai W, Jaffé P R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648: 984—992.
    [34] Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16( 5): 263—276.
    [35] Kraft B, Strous M, Tegetmeyer H E. Microbial nitrate respiration–Genes , enzymes and environmental distribution[J]. Journal of Biotechnology, 2011, 155( 1): 104—117.
    [36] Dang Y A, Li S Q, Wang G D, et al. The different characteristics of soil fixed ammonium from south to north on the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13( 5): 831—837. [党亚爱,李世清,王国栋,等. 黄土高原典型土壤矿物固定态铵变化的南北差异[J]. 植物营养与肥料学报, 2007, 13( 5): 831—837]
    [37] Jamieson J, Prommer H, Kaksonen A H, et al. Identifying and quantifying the intermediate processes during nitrate-dependent iron (II ) oxidation[J]. Environmental Science & Technology, 2018, 52( 10): 5771—5781.
    [38] Klueglein N, Kappler A. Abiotic oxidation of Fe( II) by reactive nitrogen species in cultures of the nitratereducing Fe(II) oxidizer Acidovorax sp. BoFeN1– questioning the existence of enzymatic Fe (II ) oxidation[J]. Geobiology, 2013, 11( 2): 180—190.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈志怀,王旭刚,孙丽蓉,董乐恒,郭大勇,石兆勇.石灰性水稻土中硝酸盐依赖型与光合型亚铁氧化过程[J].土壤学报,2023,60(1):127-137. DOI:10.11766/trxb202104010174 CHEN Zhihuai, WANG Xugang, SUN Lirong, DONG Leheng, GUO Dayong. Nitrate-Dependent and Photosynthetic Fe(II) Oxidation Processes in a Calcareous Paddy Soil[J]. Acta Pedologica Sinica,2023,60(1):127-137.

复制
分享
文章指标
  • 点击次数:586
  • 下载次数: 1590
  • HTML阅读次数: 1008
  • 引用次数: 0
历史
  • 收稿日期:2021-04-01
  • 最后修改日期:2021-09-26
  • 录用日期:2021-11-25
  • 在线发布日期: 2021-11-26
文章二维码