土壤供保氮能力决定稻田氮肥增产效果和利用率
作者:
中图分类号:

S158.3

基金项目:

国家重点研发计划项目(2017YFD0200104)和中国科学院青年创新促进会会员基金(Y201956)资助


Soil Nitrogen Supply and Retention Capacity Determine the Effect and Utilization Rate of Nitrogen Fertilizer in Paddy Field
Author:
Fund Project:

National Key R&D Program of China (No. 2017YFD0200104) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Y201956)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    黑龙江五常和江苏常熟分属我国东北和华东单季稻区优质粳米的代表性产地,但五常维持水稻高产所需氮肥投入量通常远低于常熟而其增产效果优于常熟。由于两地水热条件、作物品种、农田管理和土壤类型均不同,究竟是何原因导致这种区域差异尚不清楚。为探究土壤因素的影响,在两地稻田分别取黑土型水稻土(BS)和乌栅土(WS),设不施氮(CK)、低氮和高氮(N 150和300 kg·hm–2标记尿素)处理,开展盆栽试验,比较水稻产量、氮肥利用及总损失的土壤差异,并结合室内淹水矿化培养试验,研究两种水稻土氮素矿化特征。结果发现:在相同气候和水稻品种及管理条件下进行的盆栽试验中,各处理水稻产量、氮肥增产效果及地上氮素吸收累积量BS均优于WS,差值法氮肥利用率BS较WS高出20.0~28.7个百分点,然而15N示踪法氮肥利用率BS却仅较WS高5.56~8.01个百分点。尽管施氮后水稻吸收土壤氮均增加,但BS土壤来源氮增量较WS高95.0%~215%。根据CK和相应施氮处理水稻地上部土壤来源氮差值可计算土壤氮素表观激发量在BS为173~354 mg·pot–1,在WS仅为88~113 mg·pot–1,与淹水培养试验中施氮后BS土壤矿化氮累积量高出WS 0.95倍~2.49倍相一致。说明施氮对BS土壤供氮量增加有更大促进作用。盆栽试验中BS土壤上15N肥料总损失也随施氮量增加低于WS。综上,氮肥对BS土壤激发效应强,可提供更多矿化氮和损失较低是其维持较高氮肥利用率和高产的主要原因;而氮肥对WS土壤激发效应低,且肥料氮土壤保持能力较弱,因此,水稻生长对高量氮肥投入的依赖性更高。土壤是影响稻田氮肥增产效果和氮肥利用率差异的重要因素。

    Abstract:

    【Objective】Wuchang and Changshu are the representative production areas of high-quality japonica single-cropping rice in Northeast and East of China, respectively. However, the amount of nitrogen (N) fertilizer required to maintain a high yield in Wuchang is usually much lower than that in Changshu, but the agronomic use efficiency of fertilizer N (AE) is higher than that in Changshu. Different hydrothermal conditions, crop varieties, farmland managements and soil types in these two places make it difficult to identify what causes such regional differences. To explore soil factors' influence on NUE, black paddy soil (BS) and gleyed paddy soil (WS) were collected from the two rice fields. 【Method】There were three N treatments as follows: no N treatment (CK), low N rate and high N rate (N 150 and 300 kg·hm–2 with 15N urea). A rice pot experiment was carried out in Changshu National Agro-Ecosystem Observation and Research Station to compare the rice yield, NUE, and total N loss between the two soils. The characteristics of N mineralization in the two paddy soils were also studied through a three-week indoor anaerobic incubation experiment. 【Result】The results suggested that the rice yield, agronomic fertilizer N use efficiency and above-ground N uptake of BS were better than that of WS among these N treatments under the same climate, rice variety and management levels. The NUE of BS was higher than that of WS by about 20.0%-28.7%. However, the 15N recovery efficiency of BS was only higher than that of WS by about 5.56%-8.01%. Although the above-ground N uptake by rice increased after N addition in two soils, the N increment of BS from the soil source was 95%-215% higher than that of WS. Also, the increment of N taken up from the priming effect (difference of above-ground plant N uptake derived from the soil between CK and the corresponding N application treatments) of BS was 173-354 mg·pot–1 and 88-113 mg·pot–1for WS. This observation was consistent with the results that the soil N mineralization amount of BS was 0.95-2.49 times higher than that of WS after N application in the anaerobic incubation experiment. Thus, this result indicated that the N application had a greater priming effect on the increase of N supply in BS soil. Also, the total loss of 15N fertilizer in WS soil was significantly higher than that of BS with the increase of N application rate in the pot experiment. 【Conclusion】Overall, the high yield and NUE of BS may be related to the fact that N fertilizer could provide a greater priming effect and maintain a higher soil N retention level. However, the rice yield of WS depended more on the N fertilizer input due to its lower priming effect of N fertilizer and had a weaker ability to retain fertilizer N. Thus, the soil is an important factor influencing the difference in agronomic use efficiency of fertilizer N and N use efficiency in paddy fields.

    参考文献
    [1] China Statistics Burea. China statistical yearbook-2019[M]. Beijing:China Statistical Press,2019:4-5.[国家统计局. 中国统计年鉴-2019[M]. 北京:中国统计出版社,2019:4—5.]
    [2] Huang J,Liu L S,Ma C B,et al. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years[J]. Journal of Plant Nutrition and Fertilizers,2020,26(6):987—998.[黄晶,刘立生,马常宝,等. 近30年中国稻区氮素平衡及氮肥偏生产力的时空变化[J]. 植物营养与肥料学报,2020,26(6):987—998.]
    [3] Zhu Z L,Chen R Y,Xu Y F,et al. The effect of forms and methods of placement of nitrogen fertilizer on the characteristics of the nitrogen supply in paddy soils[J]. Acta Pedologica Sinica,1979,16(3):218—233.[朱兆良,陈荣业,徐永福,等. 苏州地区平田黄泥土氮素供应过程的特点及其与氮肥施用方法的关系[J]. 土壤学报,1979,16(3):218—233.]
    [4] Che S G,Zhao B Q,Li Y T,et al. Review grain yield and nitrogen use efficiency in rice production regions in China[J]. Journal of Integrative Agriculture,2015,14(12):2456—2466.
    [5] Zhu Z L. Nitrogen mineralization and supply of paddy soil[C]. Proceedings of the First International Symposium on Paddy Soil Fertility. Chiangmai,Thailand:International Board for Soil Research and Management. 1988.
    [6] Zhu Z L. Advances in research on soil nitrogen supply and chemical fertilizer nitrogen in China[J]. Soils,1985,17(1):2—9.[朱兆良. 我国土壤供氮和化肥氮去向研究的进展[J]. 土壤,1985,17(1):2—9.]
    [7] Zhu Z L. The mineralization and provision of nitrogen in soil//Current situation and forecast of research work on nitrogen in soil of China[M]. Beijing:Science Press,1986:14—27.[朱兆良.土壤氮素的矿化与供应//我国土壤氮素研究工作的现状与展望[M].北京:科学出版社,1986:14—27.]
    [8] Li S Y,Wang J Y,Kong W G. Studies on the characteristics of nitrogen supply in paddy soils Ⅱ. Effect of fertilization on the soil nitrogen supply and grain yield of double cropping-rice[J]. Acta Pedologica Sinica,1982,19(1):13—21.[李实烨,王家玉,孔万根. 稻田土壤供氮性能的研究——Ⅱ.双季稻种植过程中施肥对土壤供氮性能和水稻产量的影响[J]. 土壤学报,1982,19(1):13—21.]
    [9] Zhu Z L,Cai G X,Xu Y H,et al. Nitrogen mineralization of paddy soils in Tai-lake Region and the prediction of soil nitrogen supply[J]. Acta Pedologica Sinica,1984,21(1):29—36.[朱兆良,蔡贵信,徐银华,等. 太湖地区水稻土的氮素矿化及土壤供氮量的预测[J]. 土壤学报,1984,21(1):29—36.]
    [10] Wang W,Yu X X,Liu H,et al. Agricultural soil nitrogen mineralization:A review[J]. Soil and Water Conservation in China,2016(10):67—71.[王伟,于兴修,刘航,等. 农田土壤氮矿化研究进展[J]. 中国水土保持,2016(10):67—71.]
    [11] Wang X X,Huang P,Wu S J,et al. Kinetics modeling of soil nitrogen mineralization:A review[J]. World Sci-Tech R & D,2017,39(2):164—173.[王小晓,黄平,吴胜军,等. 土壤氮矿化动力学模型研究进展[J]. 世界科技研究与发展,2017,39(2):164—173.]
    [12] Lu T H. Study on the nitrogen mineralization simulation of farmland soil under drying-wetting cycles[D]. Yangling,Shaanxi:Research Center of Soil and Water Conservation and Ecological Environment,Chinese Academy of Sciences and Ministry of Education,2020.[路天慧. 干湿交替条件下农田土壤氮矿化模拟研究[D]. 陕西杨凌:中国科学院教育部水土保持与生态环境研究中心,2020.]
    [13] Fu H M. Quantitative relationship and its mechanism of nitrogen use efficiency and soil fertility in black soil region of northeast China[D]. Beijing:Chinese Academy of Agricultural Sciences,2019.[付海美. 东北黑土区氮肥利用率与土壤肥力水平的定量关系及机制[D]. 北京:中国农业科学院,2019.]
    [14] Zhao L,Li S Q,Li S X,et al. Accumulation of soil nitrate nitrogen in the process of ecological and its effects in plant nitrogen nutrition in semiarid areas[J]. Agricultural Research in the Arid Areas,2004,22(4):14—20.[赵琳,李世清,李生秀,等. 半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用[J]. 干旱地区农业研究,2004,22(4):14—20.]
    [15] Shen S M. The effect of mineral nitrogen on the minieralization and immobilization of soil nitrogen[J]. Acta Pedologica Sinica,1986,23(1):10—16.[沈善敏. 无机氮对土壤氮矿化与固定的影响——兼论土壤氮的"激发效应"[J]. 土壤学报,1986,23(1):10—16.]
    [16] Westerman R L,Kurtz L T. Priming effect of 15N-labeled fertilizers on soil nitrogen in field experiments[J]. Soil Science Society of America Journal,1973,37(5):725—727.
    [17] Westerman R L,Kurtz L T. Isotopic and nonisotopic estimations of fertilizer nitrogen uptake by sudangrass in field experiments[J]. Soil Science Society of America Journal,1974,38(1):107—109.
    [18] Han X Z,Wang S Y,Song C Y,et al. Fate of fertilizer nitrogen in paddy field of black soil region[J]. Chinese Journal of Applied Ecology,2003,14(11):1859—1862.[韩晓增,王守宇,宋春雨,等. 黑土区水田化肥氮去向的研究[J]. 应用生态学报,2003,14(11):1859—1862.]
    [19] Pan X Z,Pan K. National 1:4 million soil type distribution map(China Soil System Classification System)(2000)[DB/OL]. Soil SubCenter,National Earth System Science Data Center,National Science & Technology Infrastructure of China. http://soil.geodata.cn.[2019-03-21].[潘贤章,潘恺. 全国1:400万土壤类型分布图(中国土壤系统分类系统)(2000)[DB/OL].国家科技基础条件平台-国家地球系统科学数据中心-土壤分中心. http://soil.geodata.cn.[2019-03-21]]
    [20] Xing G X,Zhao X,Wang S Q. Views on improved nitrogen cycling in Chinese cropland[M]. Beijing:Science Press,2020:194—195.[邢光熹,赵旭,王慎强. 论中国农田氮素良性循环[M]. 北京:科学出版社,2020:194—195.]
    [21] Zuo H J,Bai Y L,Lu Y L,et al. Fate of fertilizer nitrogen applied to winter wheat in North China plain based on high abundance of 15N[J]. Scientia Agricultura Sinica,2012,45(15):3093—3099.[左红娟,白由路,卢艳丽,等. 基于高丰度15N华北平原冬小麦肥料氮的去向研究[J]. 中国农业科学,2012,45(15):3093—3099.]
    [22] Tian D,Gao M,Xu C. Effects of soil moisture and nitrogen addition on nitrogen mineralization and soil pH in purple soil of three different textures[J]. Journal of Soil and Water Conservation,2016,30(1):255—261.[田冬,高明,徐畅. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报,2016,30(1):255—261.]
    [23] Benbi D K,Richter J. A critical review of some approaches to modelling nitrogen mineralization[J]. Biology and Fertility of Soils,2002,35(3):168—183.
    [24] Li J M,Li D C,Xu M G,et al. Ammonia volatilization and its influence factors under different fertilization in red paddy soil with double rice cropping system[J]. Ecology and Environment,2008,17(4):1610—1613.[李菊梅,李冬初,徐明岗,等. 红壤双季稻田不同施肥下的氨挥发损失及其影响因素[J]. 生态环境,2008,17(4):1610—1613.]
    [25] Yang Y J,Meng T Z,Qian X Q,et al. Evidence for nitrification ability controlling nitrogen use efficiency and N losses via denitrification in paddy soils[J]. Biology and Fertility of Soils,2017,53(3):349—356.
    [26] Lü D Q,Zhang S L,Yang X Y. Effect of supplying C and N on the mineralization,immobilization and priming effect of soil nitrogen[J]. Plant Nutrition and Fertilizer Science,2007,13(2):223—229.[吕殿青,张树兰,杨学云. 外加碳、氮对土壤氮矿化、固定与激发效应的影响[J]. 植物营养与肥料学报,2007,13(2):223—229.]
    [27] Li S Q,Li S X. Priming effect of ammonium nitrogen fertilizer on soil nitrogen under waterlogged condition[J]. Plant Natrition and Fertilizen Science,2001,7(4):361—367.[李世清,李生秀. 淹水培养条件下铵态氮肥对土壤氮素的激发效应[J]. 植物营养与肥料学报,2001,7(4):361—367.]
    [28] Zhao X,Xie Y X,Xiong Z Q,et al. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region,China[J]. Plant and Soil,2009,319(1/2):225—234.
    [29] Zhu Z L. Mineralization of soil nitrogen and the evaluation of soil nitrogen availability indexes[M]//Zhu Z L. Wen Q X. Nitrogen in soils of China. Nanjing:Jiangsu Science and Technology Publishing House,1992:37—59.[朱兆良. 土壤氮素的矿化和土壤氮素有效性指标的评价[M]//朱兆良,文启孝. 中国土壤氮素. 南京:江苏科学技术出版社,1992:37—59.]
    [30] Liu S W,Yin M,Chu G,et al. Research progress of soil nitrogen priming effect and its microbial mechanisms[J]. Chinese Journal of Rice Science,2019,33(4):303—312.[刘少文,殷敏,褚光,等. 土壤氮激发效应及其微生物机理研究进展[J]. 中国水稻科学,2019,33(4):303—312.]
    [31] Hamer U,Marschner B. Priming effects in different soil types induced by fructose,alanine,oxalic acid and catechol additions[J]. Soil Biology & Biochemistry,2005,37(3):445—454.
    [32] Huang D M,Gao J H,Zhu P L. The transformation and distribution of organic and inorganic fertilizer nitrogen in rice-soil system[J]. Acta Pedologica Sinica,1981,18(2):107—121.[黄东迈,高家骅,朱培立. 有机、无机肥料氮在水稻-土壤系统中的转化与分配[J]. 土壤学报,1981,18(2):107—121.]
    [33] Jenkinson D S,Fox R H,Rayner J H. Interactions between fertilizer nitrogen and soil nitrogen—the so-called 'priming' effect[J]. European Journal of Soil Science,1985,36(3):425—444.
    [34] Finn D,Page K,Catton K,et al. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry[J]. Soil Biology & Biochemistry,2015,91:160—168.
    [35] Dai H M,Liu K,Song Y H,et al. Black soil degradation and intensity in northeast China:Geochemical indication[J]. Geology and Resources,2020,29(6):510—517.[戴慧敏,刘凯,宋运红,等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源,2020,29(6):510—517.]
    [36] Wang L H,Wang C H. The reasons and protect methods of black soil degradation in Northeast China[J]. Jiangxi Agriculture,2019(22):48.[王立华,王春红. 东北地区黑土地退化的原因及保护措施[J]. 江西农业,2019(22):48.]
    [37] Zhu Z L,Wen Q X,Cheng L L. Fixation and release of ammonium[M]//Zhu Z L. Wen Q X. Nitrogen in soils of China. Nanjing:Jiangsu Science and Technology Publishing House,1992:70—75.[朱兆良,文启孝,程励励. 铵的固定和释放[M]//朱兆良,文启孝. 中国土壤氮素. 南京:江苏科学计数出版社,1992:70—75.]
    [38] Cavalli D,Consolati G,Marino P,et al. Measurement and simulation of soluble,exchangeable,and non-exchangeable ammonium in three soils[J]. Geoderma,2015,259/260:116—125.
    [39] Ranjbar F,Jalali M. Empirical and mechanistic evaluation of NH4+ release kinetic in calcareous soils[J]. Archives of Environmental Contamination and Toxicology,2014,66(4):606—615.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨秉庚,蔡思源,刘宇娟,徐灵颖,汪玉,彭显龙,赵旭,颜晓元.土壤供保氮能力决定稻田氮肥增产效果和利用率[J].土壤学报,2023,60(1):212-223. DOI:10.11766/trxb202104070181 YANG Binggeng, CAI Siyuan, LIU Yujuan, XU Lingying, WANG Yu, PENG Xianlong, ZHAO Xu, YAN Xiaoyuan. Soil Nitrogen Supply and Retention Capacity Determine the Effect and Utilization Rate of Nitrogen Fertilizer in Paddy Field[J]. Acta Pedologica Sinica,2023,60(1):212-223.

复制
分享
文章指标
  • 点击次数:711
  • 下载次数: 1983
  • HTML阅读次数: 2039
  • 引用次数: 0
历史
  • 收稿日期:2021-04-07
  • 最后修改日期:2021-05-31
  • 录用日期:2021-07-16
  • 在线发布日期: 2021-07-19
文章二维码