离子型稀土闭矿区土壤铵态氮富集特征
作者:
基金项目:

国家重点研发计划项目(2018YFC1801801)资助


Enrichment Characteristics of Soil Ammonium Nitrogen in Ionic Rare Earth Mining Area
Author:
Fund Project:

Supported by the National Key Research and Development Program of China (No. 2018YFC1801801)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    离子型稀土开采使用的浸矿剂(硫酸铵)造成土壤铵态氮(NH4+-N)残留,带来严重的氮污染,危及生态环境和人体健康,导致稀土矿开采受限。为明确已开采矿区土壤中NH4+-N的富集特征及其影响因素,选择江西省赣州市龙南县一个已闭矿4年的原地浸矿离子型稀土矿山,在山体不同坡位布点,自土表至矿体底板(土体与基岩交界处,深度为5.5~9.7 m)分层采样,并测定了土体中的NH4+-N及其相关的土壤性质。结果表明,矿区土壤NH4+-N含量范围为2.32~1056.44 mg·kg–1(263.12±301.59 mg·kg–1),是自然和农田土壤的数倍甚至上百倍。从土体分布来看,矿体部分土壤NH4+-N含量高于其上部土壤,不同土层间差异显著。从不同地形部位来看,NH4+-N的平均含量坡顶>坡底>坡中。由于土体中铵过饱和,不同于自然土壤,NH4+-N的分布不受常规土壤理化性质的直接影响,主要受控于浸矿液直接输入的深度、输入量和土体结构带来的渗透性能变化。在降雨的淋洗作用下,开采矿区土体中大量的NH4+-N会不断向周边土壤和水体迁移,对生态环境带来长期的危害。本研究结果对完善离子型稀土矿区土壤氮化物的迁移过程、指导氨氮污染的治理具有重要意义。

    Abstract:

    【Objective】The leaching agent (ammonium sulfate) causes residues of ammonium nitrogen in the soil of ionic rare earth mining area.This results in serious nitrogen pollution in the soil and water bodies and destroys the ecological environment in the mining area. It also endangers the health of the surrounding residents and restricts the mining of ionic rare earth ore. However, the ammonium nitrogen pollution situation in ionic rare earth tailings and its impact mechanism are still unclear. 【Method】In order to understand the enrichment characteristics of soil ammonium nitrogen in the mining area and its influencing factors, we chose an in-situ leaching ionic rare earth mining area that has been closed for 4 years in Longnan County, Ganzhou City, Jiangxi Province. We sampled sites located on the different slopes of the hill. Soil samples were chosen from the soil surface to the bottom of the ore body, with a depth of 5.5 to 9.7 m. Ammonium nitrogen and other soil properties in the soil were determined. 【Result】The results show that soil ammonium nitrogencontent in the mining area ranged from 2.32 to 1056.44 mg·kg–1, and was several times or even hundreds of times higher than in the natural and farmland soils. Ammonium nitrogen in the mining layers with rare earth was higher than in the upper soil, and with wide the variations among different soil layers in the vertical direction. Also, soil ammonium nitrogen content in the hill slope followed the sequence of top > bottom > middle slope. The correlation between soil ammonium nitrogen and the physicochemical properties of ionic rare earth tailings was observed to be different from the research conclusions of natural or farmland soil. Due to the supersaturation of ammonium in the soil, the distribution of ammonium nitrogen is not directly controlled by soil basic physicochemical properties which have an important influence on the ammonium nitrogen adsorption, such as soil clay, cation exchange capacity, etc. 【Conclusion】The major factors observed to influence ammonium nitrogen are the depth and amount of leaching solution inputting, and the permeability changes caused by the soil structure. Mining facilities such as leaching liquid pools, liquid collecting ditch, etc, affect the surrounding soil ammonium nitrogen content. Due to gravity, ammonium nitrogen will gradually migrates from the top to the middle and the bottom of the slope. This causes ammonium nitrogen to accumulate at the bottom of the slope over time. Under the leaching action of rainfall, a large amount of ammonium nitrogen in mining area soil will continuously migrate to the surrounding soil and water, which will harm the ecological environment in the long run. The results of this study are of great significance for improving the migration process of soil nitrogen in ionic rare earth mining areas and guiding the treatment of ammonium nitrogen pollution.

    参考文献
    [1] Zhu M Y,Cui Z N. Analysis of global rare earth market,and its future development,and demands[J]. Journal of Shanghai Normal University(Natural Sciences),2019,48(6):686—694.[朱铭岳,崔中倪. 全球稀土市场分析及未来的发展和需求[J]. 上海师范大学学报(自然科学版),2019,48(6):686—694.]
    [2] Peng Y,He J G,Zhang Z M,et al. Eco-environmental dynamic monitoring and assessment of rare earth mining area in Southern Ganzhou Using Remote Sensing[J]. Acta Ecologica Sinica,2016,36(6):1676—1685.[彭燕,何国金,张兆明,等. 赣南稀土矿开发区生态环境遥感动态监测与评估[J]. 生态学报,2016,36(6):1676—1685.]
    [3] Liu J H,Chen L K,Liu C Y,et al. Pb speciation in rare earth minerals and use of entropy and fuzzy clustering methods to assess the migration capacity of Pb during mining activities[J]. Ecotoxicology and Environmental Safety,2018,165:334—342.
    [4] Zhang S J,Zhang L W,Zhang Y W,et al. Summarize on rare earth mineral resources and their distribution at home and abroad[J]. Inorganic Chemicals Industry,2020,52(1):9—16.[张苏江,张立伟,张彦文,等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业,2020,52(1):9—16.]
    [5] Chen J B,Huo W M,Li X F,et al. Comparative analysis of rare earth resources situation between China,the US and the EU[J]. Natural Resource Economics of China,2020,33(7):8—12,74.[陈甲斌,霍文敏,李秀芬,等. 中国与美国和欧盟稀土资源形势对比分析[J]. 中国国土资源经济,2020,33(7):8—12,74.]
    [6] Yan H S,Liang T M,Liu Q S,et al. Compound leaching behavior and regularity of ionic rare earth ore[J]. Powder Technology,2018,333:106—114.
    [7] Xiao Y F,Gao G H,Huang L,et al. A discussion on the leaching process of the ion-adsorption type rare earth ore with the electrical double layer model[J]. Minerals Engineering,2018,120:35—43.
    [8] Wang J P,Huang J,Wang H J. Problems and Countermeasures in Mining Technology of Ionic Rare Earth Ore[J]. China Metal Bulletin,2019(11):231—232.[汪江萍,黄金,王慧娟. 离子型稀土矿开采工艺存在的问题与对策[J]. 中国金属通报,2019(11):231—232.]
    [9] Yin S H,Pei J N,Jiang F,et al. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution[J]. Ultrasonics Sonochemistry,2018,41:156—162.
    [10] Zhao Y H,Zhang T,Cheng X X. Advance of ammonia nitrogen pollution and control techniques for soil and water environment in ion-adsorption rare earth mines[J]. Chinese Rare Earths,2020,41(1):124—132.[赵永红,张涛,成先雄. 离子吸附型稀土矿区土壤与水环境氨氮污染及防治技术研究进展[J]. 稀土,2020,41(1):124—132.]
    [11] Guo Z Q,Zhao K,Jin J F,et al. Reviews on environmental assessment and pollution prevention of ion adsorption type rare earth ores[J]. Chinese Rare Earths,2019,40(3):115—126.[郭钟群,赵奎,金解放,等. 离子型稀土矿环境风险评估及污染治理研究进展[J]. 稀土,2019,40(3):115—126.]
    [12] Li C. The generalization and application of new technology on lixiviating mineral at the original place for ionic rare earths[J]. Nonferrous Metals Science and Engineering,2011,2(1):63—67.[李春. 原地浸矿新工艺在离子型稀土矿的推广应用[J]. 有色金属科学与工程,2011,2(1):63—67.]
    [13] Zheng W Q,He Y,Sun P. Study on the in situ leaching mining method in application of main parameter setting problems of weathering crust ion adsorption type rare earth deposit[J]. Southern Metals,2015(5):40—43.[郑伟强,贺义,孙鹏. 原地浸矿采矿法在风化壳离子吸附型稀土矿床应用中主要参数设定问题的研究[J]. 南方金属,2015(5):40—43.]
    [14] Li G,Zhu Z C,Liang J,et al. Industrial experimental study on in situ leaching of a rare earth ore[J]. World Nonferrous Metals,2019(21):268,270.[李刚,朱志成,梁健,等. 某稀土矿原地浸矿工业试验研究[J]. 世界有色金属,2019(21):268,270.]
    [15] Liu F,Wu L L. Study on the characteristics of plant community in the unmined area of rare earth mine in Longnan[J]. China Mining Magazine,2017,26(S2):138—140.[刘芳,吴亮亮. 赣州龙南稀土矿场未开采区植被群落特征研究[J]. 中国矿业,2017,26(S2):138—140.]
    [16] Ma G X,Zhu W Q,Wang X J,et al. Evaluation of ecological and environmental cost of rare earth resource exploitation in China from 2001 to 2013[J]. Journal of Natural Resources,2017,32(7):1087—1099.[马国霞,朱文泉,王晓君,等. 2001—2013年我国稀土资源开发生态环境成本评估[J]. 自然资源学报,2017,32(7):1087—1099.]
    [17] Liu W S,Liu C,Wang Z W,et al. Limiting factors for restoration of dumping sites of ionic rare earth mine tailings[J]. Acta Pedologica Sinica,2015,52(4):879—887.[刘文深,刘畅,王志威,等. 离子型稀土矿尾砂地植被恢复障碍因子研究[J]. 土壤学报,2015,52(4):879—887.]
    [18] Ren F T,Zhang Q Y,Yang G,et al. Characteristics of ammonium nitrogen pollution in deep soil profile of ionic rare earth ore tailings and influencing factors[J]. Acta Pedologica Sinica,2021,DOI:10.11766/trxb202006 19031.[任富天,张秋英,杨广,等. 离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素[J]. 土壤学报,2021,DOI:10.11766/trxb20200619031.]
    [19] Tu T,Wang Y,An D,et al. Present situation,hazard and treatment technology of groundwater pollution in rare earth mining area of southern Jiangxi[J]. Journal of Environmental Engineering Technology,2017,7(6):691—699.[涂婷,王月,安达,等. 赣南稀土矿区地下水污染现状、危害及处理技术与展望[J]. 环境工程技术学报,2017,7(6):691—699.]
    [20] Liu J,Li Z. The treatment technology of ammonia- nitrogen wastewater and its development[J]. Mining and Metallurgical Engineering,2007,27(4):54—60.[刘健,李哲. 氨氮废水的处理技术及发展[J]. 矿冶工程,2007,27(4):54—60.]
    [21] Ministry of Natural Resources of the People's Republic of China. Notice of the Ministry of Natural Resources on further regulating the approval and administration of the mining rights of rare earth tungsten mines[M]. 2018.[自然资源部. 自然资源部关于进一步规范稀土矿钨矿矿业权审批管理的通知[M]. 2018.]
    [22] Ministry of Land and Resources. Notice of the Ministry of Land and Resources on issuing the total control index for rare earth mines and tungsten mines in 2014[M]. 2014.[国土资源部. 国土资源部关于下达2014年度稀土矿钨矿开采总量控制指标的通知[M]. 2014.]
    [23] Fan X,Xue Q,Liu S W,et al. The influence of soil particle size distribution and clay minerals on ammonium nitrogen in weathered crust elution-deposited rare earth tailing[J]. Ecotoxicology and Environmental Safety,2021,208:111663.
    [24] Yang S,Xue Q,Chen H H. Enhanced recovery of water due to ammonia nitrogen contamination caused by mining processes[J]. Environmental Earth Sciences,2016,75(14):1—9.
    [25] Zheng X K. Vertical distribution of residual leaching agent and rare earth in in situ leaching wasteland of ionic rare earth[D]. Ganzhou,China:Jiangxi University of Science and Technology,2019.[郑先坤. 离子型稀土原地浸矿废弃地中残存浸取剂与稀土的垂直分布规律研究[D]. 江西赣州:江西理工大学,2019.]
    [26] Lu H Z,Cao L X,Liang Y,et al. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in Southern China[J]. Solid Earth,2017,8(4):845—855.
    [27] Qie H M,Wen B Y,Wang J Q,et al. Safety evaluation of heavy metal contents in selenium-rich soil in the Zishan area,Ganzhou,Jiangxi Province[J]. East China Geology,2017,38(3):234—240.[郄海满,文帮勇,王继强,等. 江西赣州梓山地区富硒土壤重金属元素安全性评价[J]. 华东地质,2017,38(3):234—240.]
    [28] Wu C Y. The study of ion-adsorbed type of rare earth deposits in weathering crust from south Jiangxi and north Guangdong provinces[D]. Beijing:Chinese Academy of Geological Sciences,1988.[吴澄宇. 赣南粤北地区风化壳离子吸附型稀土矿床研究[D]. 北京:中国地质科学院,1988.]
    [29] Xiong T W,Jiang F,Qi S H. Remote sensing dynamic monitoring on rare earth mining area and its vegetation restoration of 6 counties in southern Jiangxi[J]. Soil and Water Conservation in China,2018(1):40—44,69.[熊恬苇,江丰,齐述华. 赣南6县稀土矿区分布及其植被恢复的遥感动态监测[J]. 中国水土保持,2018(1):40—44,69.]
    [30] Guo Q. Impact of land use change on hydrological processes in Ganjiang River basin[D]. Chongqing:Southwest University,2020.[郭强. 土地利用变化对赣江流域水文过程的影响分析[D]. 重庆:西南大学,2020.]
    [31] Wen C Y. The research on the spatial distirbution and treatment effect of chemical contaminants in rare earth tailings[D]. Nanchang:Jiangxi Agricultural University,2013.[温春云. 稀土尾矿化学污染物空间分布及治理效果研究[D]. 南昌:江西农业大学,2013.]
    [32] Zhang G L,Gong Z T. Soil survey laboratory methods[M]. Beijing:Science Press,2012.[张甘霖,龚子同. 土壤调查实验室分析方法[M]. 北京:科学出版社,2012.]
    [33] Wu H Y,Song X D,Zhao X R,et al. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone[J]. Geoderma,2019,337:1175—1185.
    [34] Gao Z Q,Zhou Q X. Contamination from rare earth ore strip mining and its impacts on resources and eco-environment[J]. Chinese Journal of Ecology,2011,30(12):2915—2922.[高志强,周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志,2011,30(12):2915—2922.]
    [35] Li D C,Huang J,Ma C B,et al. Soil organic matter content and its relationship with pH and bulk density in agricultural areas of China[J]. Journal of Soil and Water Conservation,2020,34(6):252—258.[李冬初,黄晶,马常宝,等. 中国农耕区土壤有机质含量及其与酸碱度和容重关系[J]. 水土保持学报,2020,34(6):252—258.]
    [36] Li Y,Liang Y,Cao L X,et al. The transport of ammonia nitrogen pollutant in an ionic rare earth mining small watershed[J]. Soils,Accepted.[李宇,梁音,曹龙熹,等. 离子型稀土矿区小流域氨氮污染物地表迁移特征研究[J]. 土壤,待刊]
    [37] Zhang J,Cai Z,Müller C. Terrestrial N cycling associated with climate and plant-specific N preferences:A review[J]. European Journal of Soil Science,2018,69(3):488—501.
    [38] Li H. The characteristic and influence factors of ammonia-nitrogen adsorption desorption in the loess[D]. Xi'an:Changan University,2014.[李慧. 氨氮在黄土包气带中吸附解吸特征和影响因素探讨[D]. 西安:长安大学,2014.]
    [39] Di H J,Cameron K C,McLaren R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen,phosphorus,and sulfur in soil:A review of the theory,methodologies,and limitations[J]. Soil Research,2000,38(1):213.
    [40] Taylor A A,De-Felice J,Havill D C. Seasonal variation in nitrogen availability and utilisation in an acidic and calcareous soil[J]. New Phytologist,1982,92:141—152.
    [41] Li Q,Zhou L B,Zhu Y B,et al. Prediction method for ammonia nitrogen pollution in the soil of ionic rare earth mine[J]. Environmental Impact Assessment,2017,39(6):56—59.[李青,周连碧,祝怡斌,等. 离子型稀土矿山土壤氨氮污染预测[J]. 环境影响评价,2017,39(6):56—59.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许哲,杨金玲,张甘霖,赵越,周俊.离子型稀土闭矿区土壤铵态氮富集特征[J].土壤学报,2023,60(1):106-116. DOI:10.11766/trxb202104140195 XU Zhe, YANG Jinling, ZHANG Ganlin, ZHAO Yue, ZHOU Jun. Enrichment Characteristics of Soil Ammonium Nitrogen in Ionic Rare Earth Mining Area[J]. Acta Pedologica Sinica,2023,60(1):106-116.

复制
分享
文章指标
  • 点击次数:681
  • 下载次数: 1928
  • HTML阅读次数: 1199
  • 引用次数: 0
历史
  • 收稿日期:2021-04-14
  • 最后修改日期:2021-09-26
  • 录用日期:2021-10-13
  • 在线发布日期: 2021-10-20
文章二维码