长期不同供磷水平驯化的土壤微生物的遗留效应
作者:
中图分类号:

S154.36

基金项目:

国家自然科学基金项目(32002126)、国家重点研发计划项目(No.2018YFD0200700)、国家玉米产业体系项目(CARS-02-15)和中央高校基本科研业务费(XDJK2019C065)资助


The Soil Microbial Legacy Effects of Long-term Gradient P Fertilization Based on the Analysis of Plant Growth, Nutrient Absorption, Soil Enzyme Activity and Mycorrhizal Characteristics
Author:
Fund Project:

National Natural Science Foundation of China (No. 32002126),National Key R&D Program of China (No. 2018YFD0200700),National Maize Production System in China (CARS-02-15),Fundamental Research Funds for the Central Universities (XDJK2019C065)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在集约化农田生态系统中,长期过量施用磷肥导致土壤中磷的累积,本文研究了集约化农田生态系统中长期、不同水平的磷肥供应驯化(training)微生物形成的遗留效应(legacy effect)。依托长期定位玉米试验地(始于2007),以长期不同供磷水平(来源于施用P2O5 0、75、300 kg·hm–2的处理,分别为P0、P75、P300)石灰性土壤中的微生物为研究对象,通过盆栽接种微生物,探究不同磷供应驯化下的土壤微生物,在2个基质供磷水平(不施磷No P和+P 30 mg·kg–1)下对玉米和三叶草植物生长、养分吸收、土壤酶活性及菌根特征的影响。结果表明,菌剂类型(灭菌处理,原位菌剂)显著影响玉米和三叶草地上部生物量和磷吸收量。在2个基质磷水平处理,相比于灭菌菌剂处理,接种原位菌剂显著提高了三叶草地上部生物量和磷吸收量,但三种菌剂之间差异不显著。在No P条件下,相比于灭菌处理,接种原位菌剂对玉米地上部生物量无显著影响。在+P条件下,接种原位菌剂显著降低了玉米的生物量;在2个基质供磷水平下,玉米地上部生物量在P300处理中显著高于P0和P75。菌剂和基质供磷水平共同影响土壤酶活性。与P0和P75相比,P300菌剂显著降低了三叶草土壤中过氧化物酶活性,提高了No P条件下玉米土壤中过氧化物酶和几丁质酶的活性。在No P条件下,接种P75显著提高了玉米土壤中酸性和碱性磷酸酶的活性。2种作物的菌根特征不同,接种位P300三叶草根系丛枝菌根真菌的侵染率显著低于P0和P75,而玉米根系的侵染率在三种菌剂之间差异不显著。综上,基质供磷水平以及植物种类共同影响累积磷驯化土壤微生物的效应,说明磷肥管理需要考虑植物-微生物的特性。

    Abstract:

    Objective Long-term excessive phosphorus (P) application in intensive agro-ecosystem leads to P accumulation in soil. Whether there was a legacy effect on accumulated P in soil.Method This study was based on a long-term experiment (started in 2007) in North China Plain. The microorganisms with different P supply levels (from P2O5 0, 75, 300 kg·hm–2, P0, P75, P300, respectively) in calcareous soil was selected as the research object. Pot microbial inoculation experiment was conducted to explore the soil microorganisms training with gradient P fertilization on plant growth, nutrition absorption, soil enzyme activities and mycorrhizal characteristics under two substrate P supply levels (0 mg·kg–1, 30 mg·kg–1, no P, + P, respectively).Result The type of inoculants (original inoculants, sterilization treatment) significantly affected the aboveground biomass and phosphorus uptake of plants. Inoculating original inoculants (P0, P75 and P300) significantly increased the aboveground biomass and P uptake of clover compared with sterilized inoculants under the condition of two substrate P levels, but there was no significant difference among the three original inoculants. The aboveground biomass of maize inoculated with original inoculants P300 was significantly higher than that in the treatments of P0 and P75. At the same time, the inoculant and substrate P supply level co-affected soil enzyme activities. Compared with P0 and P75 inoculants, P300 inoculant significantly decreased the peroxidase activities in the soil of clover under no P and + P conditions, and significantly increased the peroxidase and chitinase activities in the soil of maize under no P conditions. Also, compared with inoculating in original P0 and P300 inoculants, P75 inoculant significantly increased the activities of acid and alkaline phosphatase in maize soil under no P condition. In addition, the mycorrhizal colonization differed due to plant species. Compared with P0 and P75 inoculants, the colonization rate of arbuscular mycorrhizal fungi in clover root significantly reduced after inoculating with P300, but there was no significant difference among the three original inoculants in maize root.Conclusion The substrate P supply and plant species co-affect microorganisms training by accumulated P, suggesting that plant-microbial characteristics need to be considered in P fertilizer management.

    参考文献
    [1] Shen R F, Zhao X Q. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 2015, 35(20):6584-6591沈仁芳,赵学强.土壤微生物在植物获得养分中的作用[J].生态学报, 2015, 35(20):6584-6591.
    [2] Zhu Y G, Shen R F, He J Z, et al. China soil microbiome initiative:Progress and perspective[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6):554-565朱永官,沈仁芳,贺纪正,等.中国土壤微生物组:进展与展望[J].中国科学院院刊, 2017, 32(6):554-565.
    [3] Shen J B, Bai Y, Wei Z, et al. Rhizobiont:An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4):805-813申建波,白洋,韦中,等.根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J].土壤学报, 2021, 58(4):805-813.
    [4] Smith J L, Paul E A. The significance of soil microbial biomass estimations[M]//Soil biochemistry. New York:Routledge, 1990.
    [5] Lapsansky E R, Milroy A M, Andales M J, et al. Soil memory as a potential mechanism for encouraging sustainable plant health and productivity[J]. Current Opinion in Biotechnology, 2016, 38:137-142.
    [6] Chen W B, Peng S L. Land-use legacy effects shape microbial contribution to N2O production in three tropical forests[J]. Geoderma, 2020, 358:113979.
    [7] Schmid M W, Hahl T, van Moorsel S J, et al. Feedbacks of plant identity and diversity on the diversity and community composition of rhizosphere microbiomes from a long-term biodiversity experiment[J]. Molecular Ecology, 2019, 28(4):863-878.
    [8] Adriaensen K, Vrålstad T, Noben J P, et al. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils[J]. Applied and Environmental Microbiology, 2005, 71(11):7279-7284.
    [9] Meisner A, Jacquiod S, Snoek B L, et al. Drought legacy effects on the composition of soil fungal and prokaryote communities[J]. Frontiers in Microbiology, 2018, 9:294.
    [10] Hinojosa M B, Laudicina V A, Parra A, et al. Drought and its legacy modulate the post-fire recovery of soil functionality and microbial community structure in a Mediterranean shrubland[J]. Global Change Biology, 2019, 25(4):1409-1427.
    [11] van der Bom F J T, McLaren T I, Doolette A L, et al. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus[J]. Geoderma, 2019, 355:113909.
    [12] Lang M, Bei S K, Li X, et al. Rhizoplane bacteria and plant species co-determine phosphorus-mediated microbial legacy effect[J]. Frontiers in Microbiology, 2019, 10:2856.
    [13] Mander C, Wakelin S, Young S, et al. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils[J]. Soil Biology&Biochemistry, 2012, 44(1):93-101.
    [14] Antunes P M, Lehmann A, Hart M M, et al. Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities[J]. Functional Ecology, 2012, 26(2):532-540.
    [15] Martín-Robles N, Lehmann A, Seco E, et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species[J]. New Phytologist, 2018, 218(1):322-334.
    [16] Withers P J A, Clay S D, Breeze V G. Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge[J]. Journal of Environmental Quality, 2001, 30(1):180-188.
    [17] Fixen P E, Grove J H. Testing soils for phosphorus[M]//Soil Testing and Plant Analysis. Madison:American Society of Agronomy and Soil Science Society of America, 1990.
    [18] Tabatabai M A. Soil enzymes[M]//Methods of soil analysis. Madison:American Society of Agronomy, 1982.
    [19] Koch O, Tscherko D, Kandeler E. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils[J]. Global Biogeochemical Cycles, 2007, 21(4):125-129.
    [20] Guan S Y. Soil enzymes and its research methods[M]. Beijing:Agriculture Press, 1986.关松荫.土壤酶及其研究法[M].北京:农业出版社, 1986.
    [21] McGonigle T P, Miller M H, Evans D G, et al. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi[J]. New Phytologist, 1990, 115(3):495-501.
    [22] Wang C. Influences of phosphorus supply on interactions between roots and soil microbes and post-silking partitioning of shoot carbon/phosphorus in field-grown maize[D]. Beijing:China Agricultural University, 2017王超.不同供磷量对玉米根系与土壤微生物互作及吐丝后地上部碳磷分配的影响[D].北京:中国农业大学, 2017.
    [23] Ocimati W, Tusiime G, Opio F, et al. Sorghum (Sorghum bicolor) as a bean intercrop or rotation crop contributes to the survival of bean root rot pathogens and perpetuation of bean root rots[J]. Plant Pathology, 2017, 66(9):1480-1486.
    [24] Gosling P, Mead A, Proctor M, et al. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient[J]. New Phytologist, 2013, 198(2):546-556.
    [25] Griffiths B S, Hallett P D, Kuan H L, et al. Functional resilience of soil microbial communities depends on both soil structure and microbial community composition[J]. Biology and Fertility of Soils, 2008, 44(5):745-754.
    [26] Zhang W. The mechanisms of zinc uptake and accumulation in wheat and maize as affected by phosphorus levels[D]. Beijing:China Agricultural University, 2017张伟.供磷水平对小麦玉米锌吸收、累积的影响及其作用机制[D].北京:中国农业大学, 2017.
    [27] Zhu X P, Wang Y B, Cao C Y, et al. Interaction of phosphorus and zinc in albic soil[J]. Journal of Nanjing Agricultural University, 1995, 18(2):69-73朱小平,王义炳,曹翠玉,等.白浆土磷锌关系的研究[J].南京农业大学学报, 1995, 18(2):69-73.
    [28] Zuo Y M, Zhang F S, Li X L, et al. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil[J]. Plant and Soil, 2000, 220(1/2):13-25.
    [29] Nannipieri P, Giagnoni L, Landi L, et al. Role of phosphatase enzymes in soil[M]//Soil biology. Berlin, Heidelberg:Springer, 2010:215-243.
    [30] Spohn M, Kuzyakov Y. Distribution of microbial-and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation-Coupling soil zymography with 14C imaging[J]. Soil Biology&Biochemistry, 2013, 67:106-113.
    [31] Zhao F Z, Ren C J, Han X H, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems[J]. Forest Ecology and Management, 2018, 427:289-295.
    [32] Fraser T D, Lynch D H, Bent E, et al. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management[J]. Soil Biology&Biochemistry, 2015, 88:137-147.
    [33] Luo G W, Ling N, Nannipieri P, et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions[J]. Biology and Fertility of Soils, 2017, 53(4):375-388.
    [34] Li J, Li R Q, Yuan W J. On the change of enzyme activites of cucumber leaf infected by Pseudoperonospora cubensis(berk. et ctrt) rosws[J]. Acta Phytopathologica Sinica, 1991, 21(4):277-283李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报, 1991, 21(4):277-283.
    [35] Xie Z S, Li B, Forney C F, et al. Changes in sugar content and relative enzyme activity in grape berry in response to root restriction[J]. Scientia Horticulturae, 2009, 123(1):39-45.
    [36] Mauch H, Brehmer W, Sonneborn H H, et al. Monoclonal antibodies selectively directed against the cell wall surface of Mycobacterium tuberculosis[J]. Journal of Clinical Microbiology, 1988, 26(9):1691-1694.
    [37] Qin Z F, Zhang H Y, Feng G, et al. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil[J]. Soil Biology&Biochemistry, 2020, 144:107790.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郎明,张春燕,张俊伶.长期不同供磷水平驯化的土壤微生物的遗留效应[J].土壤学报,2022,59(6):1650-1659. DOI:10.11766/trxb202104300231 LANG Ming, ZHANG Chunyan, ZHANG Junling. The Soil Microbial Legacy Effects of Long-term Gradient P Fertilization Based on the Analysis of Plant Growth, Nutrient Absorption, Soil Enzyme Activity and Mycorrhizal Characteristics[J]. Acta Pedologica Sinica,2022,59(6):1650-1659.

复制
分享
文章指标
  • 点击次数:489
  • 下载次数: 1949
  • HTML阅读次数: 1606
  • 引用次数: 0
历史
  • 收稿日期:2021-07-21
  • 最后修改日期:2021-09-06
  • 录用日期:2021-11-01
  • 在线发布日期: 2021-11-24
文章二维码