长期不同利用方式对黑土剖面中有机质化学组成的影响
作者:
中图分类号:

S714.5

基金项目:

国家自然科学基金项目(41807094)、中国科学院战略性先导科技专项(A类)(XDA28070100)和财政部和农业农村部国家现代农业产业技术体系(CARS-04)资助


Impact of Long-term Land-Use Patterns on Chemical Composition of Soil Organic Matter in Mollisol Profile
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究土地利用方式改变对土壤有机质(SOM)组成和稳定的影响。以典型黑土区29年长期定位试验为平台,采用红外光谱和固体13C核磁共振技术,对农田、草地和林地三种利用方式下不同剖面深度(0~10、10~20、20~40、40~60、60~80和80~100 cm) SOM的活性组分含量和有机质官能团进行了分析,探讨了土地利用方式变更对SOM化学组成的影响。结果表明:土壤剖面中4种活性有机碳(微生物生物量碳,溶解性有机碳,轻组有机碳和易氧化有机碳)的含量均表现为草地>林地>农田。随着剖面深度的增加,SOM的脂族碳、甲氧基碳和烷氧基碳逐渐降低,而芳香碳和羧基碳则逐渐增加,其稳定程度逐渐增强。草地和林地土壤剖面中的SOM含有较多氧化程度低、易分解的甲氧基和烷氧碳,而农田SOM则含有较高的芳香结构和羧基碳,其腐质化程度较高。土地利用方式的改变会引起上、下土层中SOM化学组成的变化,植被恢复有利于SOM活性组分的形成,长期耕作可促进SOM稳定组分的积累。

    Abstract:

    【Objective】The objective of this study was to assess the effect of land-use changes on the composition and stability of soil organic matter (SOM). 【Method】Based on a 29 years long-term experiment in typical Mollisol region, we investigated the contents of labile fractions of SOM in depths of 0~10、10~20、20~40、40~60、60~80 and 80~100 cm. Furthermore, Fourier transform infra-red and solid-state 13C nuclear magnetic resonance spectroscopies were applied to estimate the differences in functional C groups of SOM under different land uses. The land-use types included cultivated land (CL), restored grassland (GL)and artificial spruce forest land (FL). 【Result】The contents of soil labile organic C fractions (i.e. microbial biomass C, dissolved organic C, light fraction organic C and readily oxidizable organic C)were higher in GL and FL than in CL at all soil depths, and followed the order of GL> FL >CL. With the increase of soil depth, the aliphatic C, OCH3 and O-alkyl C groups of SOM gradually decreased, while the aromatic C and carboxyl C gradually increased. This indicated that the stability of SOM increased with soil depth. The proportion of OCH3 and O-alkyl C groups from plant residues were highest in the GL across all depth, followed by FL, and lowest in the CL. The SOM of CL had higher proportion of aromatic C and carboxyl C groups than that of GL and FL. This resulted a higher humification degree of SOM in CL. 【Conclusion】Our results suggest that land use changes modify the chemical composition of SOM both in the topsoil and subsoil. Vegetation restoration could increase labile components of SOM. In contrast, long-term cultivation prompted the accumulation of recalcitrant fractions in SOM.

    参考文献
    [1] Stockmann U, Adams M A, Crawford J W, et al.The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J].Agriculture, Ecosystems&Environment, 2013, 164:80-99.
    [2] Jobbágy E G, Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications, 2000, 10(2):423-436.
    [3] Luo Z K, Luo Y Q, Wang G C, et al.Warming-induced global soil carbon loss attenuated by downward carbon movement[J].Global Change Biology, 2020, 26(12):7242-7254.
    [4] Karhu K, Hilasvuori E, Fritze H, et al.Priming effect increases with depth in a boreal forest soil[J].Soil Biology and Biochemistry, 2016, 99:104-107.
    [5] Sheng H, Zhou P, Zhang Y Z, et al.Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J].Soil Biology and Biochemistry, 2015, 88:148-157.
    [6] Abrar M M, Xu M G, Shah S A A, et al.Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol[J].Science of the Total Environment, 2020, 723:138181.
    [7] Poffenbarger H J, Olk D C, Cambardella C, et al.Whole-profile soil organic matter content, composition, and stability under cropping systems that differ in belowground inputs[J].Agriculture, Ecosystems&Environment, 2020, 291:106810.
    [8] Tivet F, de Moraes Sá J C, Lal R, et al.Assessing humification and organic C compounds by laser-induced fluorescence and FTIR spectroscopies under conventional and no-till management in Brazilian Oxisols[J].Geoderma, 2013, 207/208:71-81.
    [9] Yao S H, Zhang Y L, Han Y, et al.Labile and recalcitrant components of organic matter of a Mollisol changed with land use and plant litter management:An advanced 13C NMR study[J].Science of the Total Environment, 2019,660:1-10.
    [10] Han X Z, Zou W X.Research perspectives and footprint of utilization and protection of black soil in Northeast China[J].Acta Pedologica Sinica, 2021, 58(6):1341-1358.[韩晓增,邹文秀.东北黑土地保护利用研究足迹与科技研发展望[J].土壤学报, 2021, 58(6):1341-1358.]
    [11] Kalinina O, Barmin A N, Chertov O, et al.Self-restoration of post-agrogenic soils of Calcisol-Solonetz complex:Soil development, carbon stock dynamics of carbon pools[J].Geoderma, 2015, 237/238:117-128.
    [12] Hao X X, Han X Z, Li L J, et al.Profile distribution and storage of soil organic carbon in a black soil as affected by land use types[J].Chinese Journal of Applied Ecology, 2015, 26(4):965-967.[郝翔翔,韩晓增,李禄军,等.土地利用方式对黑土剖面有机碳分布及碳储量的影响[J].应用生态学报, 2015, 26(4):965-967.]
    [13] Vance E D, Brookes P C, Jenkinson D S.Microbial biomass measurements in forest soils:The use of the chloroform fumigation-incubation method in strongly acid soils[J].Soil Biology and Biochemistry, 1987, 19(6):697-702.
    [14] Gregorich E G, Beare M H, Stoklas U, et al.Biodegradability of soluble organic matter in maize-cropped soils[J].Geoderma, 2003, 113(3/4):237-252.
    [15] Janzen H H, Campbell C A, Brandt S A, et al.Light-fraction organic matter in soils from long-term crop rotations[J].Soil Science Society of America Journal, 1992, 56(6):1799-1806.
    [16] Zhang L, Zhang W J, Xu M G et al.Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China[J].Scientia Agricultura Sinica, 2009, 42(5):1646-1655.[张璐,张文菊,徐明岗,等.长期施肥对中国3种典型农田土壤活性有机碳库变化的影响[J].中国农业科学, 2009, 42(5):1646-1655.]
    [17] Bernier M-H, Levy G J, Fine P, et al.Organic matter composition in soils irrigated with treated wastewater:FT-IR spectroscopic analysis of bulk soil samples[J].Geoderma, 2013, 209-210:233-240。
    [18] Rumpel C, Kögel-Knabner I.Deep soil organic matter-A key but poorly understood component of terrestrial C cycle[J].Plant and Soil, 2011, 338(1/2):143-158.
    [19] Qualls R G, Haines B L.Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water[J].Soil Science Society of America Journal, 1992, 56(2):578-586.
    [20] Jackson R B, Canadell J, Ehleringer J R, et al.A global analysis of root distributions for terrestrial biomes[J].Oecologia, 1996, 108(3):389-411.
    [21] Li Z P, Wu X C, Chen B Y.Changes in transformation of soil organic carbon and functional diversity of soil microbial community under different land use patterns[J].Scientia Agricultura Sinica, 2007, 40(8):1712-1721.[李忠佩,吴晓晨,陈碧云.不同利用方式下土壤有机碳转化及微生物群落功能多样性变化[J].中国农业科学, 2007, 40(8):1712-1721.]
    [22] Ding X L, Zhang X D, Yang X M, et al.Accumulation of amino sugar carbon affected by tillage in black soil in northeast China[J].Acta Pedologica Sinica, 2012, 49(3):535-543.[丁雪丽,张旭东,杨学明,等.免耕秸秆还田和传统耕作方式下东北黑土氨基糖态碳的积累特征[J].土壤学报, 2012, 49(3):535-543.]
    [23] Keeler C, Kelly E F, Maciel G E.Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA[J].Geoderma, 2006, 130(1/2):124-140.
    [24] Kögel-Knabner I, Chenu C, Kandeler E, et al.Biological and physicochemical processes and control of soil organic matter stabilization and turnover[J].European Journal of Soil Science, 2006, 57(4):425.
    [25] Rumpel C, Kögel-Knabner I, Bruhn F.Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis[J].Organic Geochemistry, 2002, 33(10):1131-1142.
    [26] Dou S.Soil organic matter[M].Beijing:Science Press, 2010.[窦森.土壤有机质[M].北京:科学出版社, 2010.]
    [27] Mao J D, Johnson R L, Lehmann J, et al.Abundant and stable char residues in soils:Implications for soil fertility and carbon sequestration[J].Environmental Science&Technology, 2012, 46(17):9571-9576.
    [28] Zhang Y L.Molecular evidence of SOM turnover in mollisol profile and its control mechanisms[D].Beijing:China Agricultural University, 2016.[张月玲.黑土土壤剖面有机质周转及其控制机制的分子证据[D].北京:中国农业大学, 2016.]
    [29] Wang Q Y, Liu J S, Wang Y, et al.Land use effects on soil quality along a native wetland to cropland chronosequence[J].European Journal of Soil Biology, 2012, 53:114-120.
    [30] Zhao H, Zheng Y T, Lü Y Z, et al.The difference of black soil humus content and structure in no-tillage and plowing tillage[J].Ecology and Environmental Sciences, 2010, 19(5):1238-1241.[赵红,郑殷恬,吕贻忠,等.免耕与常规耕作下黑土腐殖酸含量与结构的差异[J].生态环境学报, 2010, 19(5):1238-1241.]
    [31] Martin D, Srivastava P C, Ghosh D, et al.Characteristics of humic substances in cultivated and natural forest soils of Sikkim[J].Geoderma, 1998, 84(4):345-362.
    [32] Helfrich M, Ludwig B, Buurman P, et al.Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy[J].Geoderma, 2006, 136(1/2):331-341.
    [33] Solomon D, Lehmann J, Kinyangi J, et al.Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems[J].Global Change Biology, 2007, 13(2):511-530.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郝翔翔,邹文秀,韩晓增.长期不同利用方式对黑土剖面中有机质化学组成的影响[J].土壤学报,2022,59(5):1228-1237. DOI:10.11766/trxb202106010286 HAO Xiangxiang, Zou Wenxiu, HAN Xiaozeng. Impact of Long-term Land-Use Patterns on Chemical Composition of Soil Organic Matter in Mollisol Profile[J]. Acta Pedologica Sinica,2022,59(5):1228-1237.

复制
分享
文章指标
  • 点击次数:798
  • 下载次数: 1717
  • HTML阅读次数: 2354
  • 引用次数: 0
历史
  • 收稿日期:2021-06-01
  • 最后修改日期:2022-01-18
  • 在线发布日期: 2022-08-16
文章二维码