肥力提升措施对林地红壤生物结皮层微生物群落结构的影响
作者:
基金项目:

国家自然科学基金项目(31660192)、江西省教育厅科学技术研究项目(GJJ161093)和江西省水利厅科技项目(KT201546)资助


Effects of Different Fertility Improvement Measures on Microbial Community Structures in Biological Red Soil Crusts of Woodland
Author:
Fund Project:

the Science and Technology Research Project of Jiangxi Province Education Department (No. GJJ161093 and GJJ201924) and the Science and Technology Project of Jiangxi Province Water Resources Department (No. KT201546)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    微生物在土壤生物结皮形成中起重要作用,但是目前对于南方红壤生物结皮层中微生物群落的研究鲜少涉及,尤其是在林地改良措施下红壤结皮层中微生物群落结构的变化尚不清楚。本研究以中亚热带典型第四纪红黏土严重侵蚀湿地松裸露林地为对照,添加有机肥、生物炭和石灰+微生物肥料为肥力提升措施,采用Illumina MiSeq高通量测序技术研究不同肥力提升措施对红壤生物结皮层细菌和真菌群落结构的影响。结果表明:该林地土壤生物结皮层共检测出21个细菌门和7个真菌门,优势细菌门为酸杆菌门(Acidobacteria)(27.39%)、变形菌门(Proteobacteria)(25.90%)、放线菌门(Actinobacteria)(16.68%)和绿弯菌门(Chloroflexi)(12.26%);优势真菌门为担子菌门(61.19%)和子囊菌门(29.48%);肥力提升措施对细菌和真菌多样性无显著影响,却显著改变了其群落结构,作用大小依次为有机肥处理、生物炭处理、石灰+微生物肥料处理,且对细菌群落结构的影响高于真菌;三种措施均明显提高了变形菌门(Proteobacteria)细菌的相对丰度,降低了绿弯菌门(Chloroflexi)细菌的相对丰度,有机肥处理和石灰+微生物肥料处理均明显提高了子囊菌门(Ascomycota)真菌的相对丰度,却降低了担子菌门(Basidiomycota)真菌的相对丰度,而生物炭处理则相反;土壤环境因子中pH、有机碳和全氮对微生物群落结构的影响较大。研究结果对于红壤侵蚀区调控土壤微生物群落结构,进而促进生物结皮形成,防治林下水土流失具有重要指导意义。

    Abstract:

    【Objective】Microorganisms play an important role in the formation of biological soil crusts while biological soil crusts are important for controlling soil erosion. However, there is limited research on microbial community in the biological soil crusts of southern red soil. Therefore, the changes of microbial community structure under forest fertility improvement measures in this area are unclear.【Method】The present study was conducted in the Pinus elliotti forest of tropical Quaternary laterite in the middle subtropical zone. Organic fertilizer, biochar, and lime + microbial fertilizer were added to soil, and bare land was set as the control (CK). High throughput sequencing technology (Illumina MiSeq) was used to study the effects of the three fertility improvement measures on bacterial and fungal community structures. 【Result】Results showed that 21 bacteriophyta and 7 mycobionta were detected in biological soil crusts. The dominant bacteriophyta were Acidobacteria (27.39%), Proteobacteria (25.90%), Actinobacteria (16.68%), Chloroflexi (12.26%), while the dominant mycobionta were Basidiomycota (61.19%) and Ascomycota (29.48%). The three fertility improvement measures had no significant effects on the diversities of bacteria and fungi, but significantly changed their community structures in order of organic fertilizer > biochar > lime + microbial fertilizer, and these effects were higher in bacteria, compared to fungi. Also, the effects of the three fertility improvement measures on specific bacteriophyta and mycobionta were different. The three fertility improvement measures increased the relative abundance of Proteobacteria, and decreased the relative abundance of Chloroflexi. Organic fertilizer and lime + microbial fertilizer increased the relative abundance of Ascomycota, but decreased the relative abundance of Basidiomycota, while biochar had opposite effects on mycobionta. Among the soil environmental factors, pH, organic carbon, and total nitrogen had a great influence on microbial community structure.【Conclusion】These results provided significant scientific guidance for the regulation of soil microbial community structures in biological soil crusts, which is beneficial for the formation of biological soil crusts and the control of water and soil erosion in southern red soil.

    参考文献
    [1] Li X R,Zhang Y M,Zhao Y G. A study of biological soil crusts:Recent development,trend and prospect[J]. Advances in Earth Science,2009,24(1):11—24.[李新荣,张元明,赵允格. 生物土壤结皮研究:进展、前沿与展望[J]. 地球科学进展,2009,24(1):11—24.]
    [2] Wang H L,Jia C H,Li L B. Soil crusts and research progress[J]. Journal of Hebei United University:Natural Science Edition,2013,35(2):107—112.[王华磊,贾长虹,李潞滨. 土壤结皮及研究进展[J]. 河北联合大学学报:自然科学版,2013,35(2):107—112.]
    [3] Guo Z L,Cai C F. Research status and hotspots of biological soil crust based on CiteSpace and HistCite[J]. Science of Soil and Water Conservation,2019,17(5):146—156.[郭忠录,蔡崇法. 生物土壤结皮研究进展与热点——基于CiteSpace和HistCite计量分析[J]. 中国水土保持科学,2019,17(5):146—156.]
    [4] Wu N,Pan B R,Zhang Y M. Effects and ecological significance of soil-inhabiting microorganisms in the formation of biological soil crusts[J]. Arid Zone Research,2004,21(4):444—450.[吴楠,潘伯荣,张元明. 土壤微生物在生物结皮形成中的作用及生态学意义[J]. 干旱区研究,2004,21(4):444—450.]
    [5] Mager D M,Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts:A review of their role in dryland soil processes[J]. Journal of Arid Environments,2011,75(2):91—97.
    [6] Chen Z,Wu M N,Qin H L,et al. Advances in research on molecular mechanisms of phosphate-solubilizing microorganisms in soil[J]. Acta Pedologica Sinica,2009,46(5):925—931.[陈哲,吴敏娜,秦红灵,等. 土壤微生物溶磷分子机理研究进展[J]. 土壤学报,2009,46(5):925—931.]
    [7] Han M,Li L N,Wei R,et al. Investigation of capacity increment to dissolve phosphate and potassium by blended culture[J]. Journal of Microbiology,2010,30(5):74—77.[韩梅,李丽娜,魏冉,等. 混合培养提高菌株解磷解钾能力的探讨[J]. 微生物学杂志,2010,30(5):74—77.]
    [8] Harris J A. Measurements of the soil microbial community for estimating the success of restoration[J]. European Journal of Soil Science,2003,54(4):801—808.
    [9] Hu Y L,Wang S L,Yan S K. Research advances on the factors influencing the activity and community structure of soil microorganism[J]. Chinese Journal of Soil Science,2006,37(1):170—176.[胡亚林,汪思龙,颜绍馗. 影响土壤微生物活性与群落结构因素研究进展[J]. 土壤通报,2006,37(1):170—176.]
    [10] Huang Z Q,Xu Z H,Chen C R. Effect of mulching on labile soil organic matter pools,microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia[J]. Applied Soil Ecology,2008,40(2):229—239.
    [11] Tamilselvi S M,Chinnadurai C,Ilamurugu K,et al. Effect of long-term nutrient managements on biological and biochemical properties of semi-arid tropical Alfisol during maize crop development stages[J]. Ecological Indicators,2015,48:76—87.
    [12] Xu Y Q,Yan H T,Wang X Q,et al. Effects of mixed application if biochar and organic fertilizers on microbial functional diversity in Tobacco growing Cinnamon soil[J]. Chinese Tobacco Science,2020,41(5):55—59,67.[许跃奇,阎海涛,王晓强,等. 生物炭与有机肥配施对褐土烟田微生物功能多样性的影响[J]. 中国烟草科学,2020,41(5):55—59,67.]
    [13] Fang W,Yu X,Wang J,et al. Effects of applying limestone powder and microbial fertilizer on soil chemical properties and microbial community in the diseased Carya cathayensis woodland[J]. Journal of Zhejiang A&F University,2020,37(2):273—283.[方伟,余晓,王晶,等. 施加石灰石粉和微生物肥料对发病山核桃林土壤化学性质和微生物群落的影响[J]. 浙江农林大学学报,2020,37(2):273—283.]
    [14] Zhu M T,Liu X X,Wang J M,et al. Effects of biochar application on soil microbial diversity in soil aggregates from paddy soil[J]. Acta Ecologica Sinica,2020,40(5):1505—1516.[朱孟涛,刘秀霞,王佳盟,等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报,2020,40(5):1505—1516.]
    [15] Lu R K. Analytical methods for soil and agro-chemistry[M].Beijing:China Agricultural Science and Technology Press,2000.[鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.]
    [16] Liu J J,Sui Y Y,Yu Z H,et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry,2014,70:113—122.
    [17] Liu Y,Zeng Q C,Huang Y M. Soil microbial communities by 454 prosequencing under different Arbor forests on the Loess Plateau[J]. China Environmental Science,2016,36(11):3487—3494.[刘洋,曾全超,黄懿梅. 基于454高通量测序的黄土高原不同乔木林土壤细菌群落特征[J]. 中国环境科学,2016,36(11):3487—3494.]
    [18] Duan Q Q,Yang X H,Huang X Z. The diversity of microbial resources in ecological mulberry rhizosphere soil in a rocky desertification area[J]. Journal of Southwest University:Natural Science Edition,2017,39(7):25—29.[段倩倩,杨晓红,黄先智. 石漠化地区生态桑林根际土壤微生物资源多样性研究[J]. 西南大学学报:自然科学版,2017,39(7):25—29.]
    [19] Xiao B,Veste M. Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China[J]. Applied Soil Ecology,2017,117/118:165—177.
    [20] Li J Y,Zhang X. Microbial diversity analysis of different biological soil crusts in Tengger desert[J]. Ecological Science,2017,36(3):36—42.[李靖宇,张琇. 腾格里沙漠不同生物土壤结皮微生物多样性分析[J]. 生态科学,2017,36(3):36—42.]
    [21] Zhang Y H,Zhang S Y,Zhang S H,et al. Effect of moss crust on sandy soil properties and bacterial community in Mu Us sand land[J]. Acta Pedologica Sinica,2021,58(6):1585—1597.[张雨虹,张韶阳,张树辉,等. 毛乌素沙地苔藓结皮对沙化土壤性质和细菌群落的影响[J]. 土壤学报,2021,58(6):1585—1597.]
    [22] Bossuyt H,Denef K,Six J,et al. Influence of microbial populations and residue quality on aggregate stability[J]. Applied Soil Ecology,2001,16(3):195—208.
    [23] Luo J,Lin Z L,Li S Y,et al. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field[J]. Acta Agronomica Sinica,2020,46(4):596—613.[罗俊,林兆里,李诗燕,等. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报,2020,46(4):596—613.]
    [24] Zheng H F,Wu H H,Weng B Q,et al. Improved soil microbial characteristics and enzyme activities with wheat straw biochar addition to an acid tea plantation in red soil[J]. Soil and Fertilizer Sciences in China,2019(2):68—74.[郑慧芬,吴红慧,翁伯琦,等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料,2019(2):68—74.]
    [25] Xu J W,Wang W D,Li C. The correlation among soil microorganism,enzyme and soil nutrient in different types of mixed stands of Pinus thunbergii[J]. Journal of Beijing Forestry University,2000,22(1):51—55.[许景伟,王卫东,李成. 不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J]. 北京林业大学学报,2000,22(1):51—55.]
    [26] Shen P,Chen X D. Microbiology[M].8th ed. Beijing:Higher Education Press,2016.[沈萍,陈向东. 微生物学[M]. 第8版.北京:高等教育出版社,2016.]
    [27] Xun W B,Huang T,Zhao J,et al. Environmental conditions rather than microbial inoculum composition determine the bacterial composition,microbial biomass and enzymatic activity of reconstructed soil microbial communities[J]. Soil Biology & Biochemistry,2015,90:10—18.
    [28] Xu M G,Tang H J,Yang X Y,et al. Best soil managements from long-term field experiments for sustainable agriculture[J]. Journal of Integrative Agriculture,2015,14(12):2401—2404.
    [29] Stevens C,Duprè C,Gaudnik C,et al. Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition[J]. Journal of Vegetation Science,2011,22(2):207—215.
    [30] Warnock D D,Lehmann J,Kuyper T W,et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil,2007,300(1/2):9—20.
    [31] Faoro H,Alves A C,Souza E M,et al. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest[J]. Applied and Environmental Microbiology,2010,76(14):4744—4749.
    [32] Fierer N,Bradford M A,Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354—1364.
    [33] Xun W B,Xiong W,Huang T,et al. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil[J]. Applied Soil Ecology,2016,100:38—44.
    [34] Häni H,Siegenthaler A,Candinas T. Soil effects due to sewage sludge application in agriculture[J]. Fertilizer Research,1995,43(1/2/3):149—156.
    [35] Ren T B,Yang Y D,Gao W K,et al. Effects of application amount of biochar on soil bacterial community in tobacco fields based on high-throughput sequencing[J]. Journal of Henan Agricultural Sciences,2018,47(12):64—69.[任天宝,杨艳东,高卫锴,等. 基于高通量测序的生物炭施用量对植烟土壤细菌群落的影响[J]. 河南农业科学,2018,47(12):64—69.]
    [36] Chang K T,Weng C I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation[J]. Journal of Applied Physics,2006,100(4):043917.
    [37] Cheng Y,Liu Z D,Shen Q B,et al. The impact of straw biochar on corn rhizospheric and non-rhizospheric soil microbial community structure[J]. Ecology and Environmental Sciences,2018,27(10):1870—1877.[程扬,刘子丹,沈启斌,等. 秸秆生物炭施用对玉米根际和非根际土壤微生物群落结构的影响[J]. 生态环境学报,2018,27(10):1870—1877.]
    [38] Guo J J,Liu W B,Zhu C,et al. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments[J]. Plant and Soil,2018,424(1/2):335—349.
    [39] Rousk J,Brookes P C,Bååth E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment[J]. FEMS Microbiology Ecology,2011,76(1):89—99.
    [40] Li F H,Li M,Liu J Q,et al. Effect of biochar on fungal abundance of rhizosphere soil and cucumber root growth in greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(4):265—270,341.[李发虎,李明,刘金泉,等. 生物炭对温室黄瓜根际土壤真菌丰度和根系生长的影响[J]. 农业机械学报,2017,48(4):265—270,341.]
    [41] Lopes A R,Manaia C M,Nunes O C. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing[J]. FEMS Microbiology Ecology,2014,87(3):650-663.
    [42] Zhang B C,Wu Z F,Li B. Progress and prospect of biological soil crusts in Loess Plateau[J]. Acta Pedologica Sinica,2021,58(5):1123—1131.[张丙昌,武志芳,李彬. 黄土高原生物土壤结皮研究进展与展望[J]. 土壤学报,2021,58(5):1123—1131.]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王金平,黄荣珍,朱丽琴,黄国敏,邹显花,管鸿智,林丽靖,李鑫.肥力提升措施对林地红壤生物结皮层微生物群落结构的影响[J].土壤学报,2023,60(1):292-303. DOI:10.11766/trxb202108130311 WANG Jinping, HUANG Rongzhen, ZHU Liqin, HUANG Guomin, ZOU Xianhua, GUAN Hongzhi, LIN Lijing, LI Xin. Effects of Different Fertility Improvement Measures on Microbial Community Structures in Biological Red Soil Crusts of Woodland[J]. Acta Pedologica Sinica,2023,60(1):292-303.

复制
分享
文章指标
  • 点击次数:550
  • 下载次数: 1850
  • HTML阅读次数: 1275
  • 引用次数: 0
历史
  • 收稿日期:2021-08-13
  • 最后修改日期:2021-10-15
  • 录用日期:2021-12-26
  • 在线发布日期: 2022-01-20
文章二维码