人工植被重建对沙化高寒草地土壤真菌群落特征的影响
作者:
中图分类号:

S154.3

基金项目:

国家自然科学基金项目(31971749)、青海省重点研发与科技成果转化项目(2019-SF-152)和青海省创新平台建设专项“青海省寒区恢复生态学重点实验室(2017-ZJ-Y20) ”共同资助


Impacts of Artificial Revegetation on Soil Fungal Community in Desertified Alpine Grassland
Author:
Fund Project:

the Key R&D and Transformation Projects of Qinghai Province (2019-SF-152); the Natural Science Foundation Committee of China (31971749); the Qinghai Innovation Platform Construction Project:Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area (2017-ZJ-Y20)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用实时荧光定量PCR(Quantitative real-time PCR)和Illumina Miseq高通量测序技术研究了天然草地(NG)、沙化草地(DG)、草本人工草地(AG)和人工灌丛植被(AS)四种不同草地类型的表层(0~10 cm)土壤真菌群落的生物量、多样性和结构,以揭示不同人工植被恢复措施对沙化高寒草地土壤真菌群落恢复的影响及其驱动因子。结果表明:1)草地沙化显著(P<0.05)降低了真菌群落的生物量和α多样性,人工植被重建则明显促进了二者的恢复,22年后与NG无显著差异。2)草地沙化和人工植被重建均极显著(P=0.001)改变了真菌群落结构。草地沙化后,担子菌门相对丰度显著(P<0.05)下降,一些稀有真菌趋于消失,而未分类真菌门的相对丰度则显著(P<0.01)增加。经过22年的生态恢复,绝大多数真菌门的相对丰度与NG无显著差异;AG与NG的真菌群落结构比AS与NG更为相似。3)真菌群落α多样性与植被和土壤属性之间的相关关系因多样性指数的不同而异,而其群落结构与大多数植被和土壤属性极显著(P<0.01)正相关,植被和土壤属性二者结合解释了21.4%~50.0%的真菌群落结构变化。以上结果表明,人工植被重建22年后,沙化高寒草地真菌群落的多样性和相对丰度基本得以恢复,但其群落结构与天然草地的相似度仍不高,而利用草本植物进行沙化高寒草地的恢复比灌木物种更有利于土壤真菌群落结构的恢复。

    Abstract:

    【Objective】This study aimed to illustrate the impacts of different revegetation approaches on the resilience of soil fungal communities in desertified alpine grasslands, and to explore the main environmental factors in driving the succession of soil fungal community.【Methods】We sampled surface soils within 0-10 cm from four different types of alpine grasslands, i.e., natural grassland (NG), desertified grassland (DG), herb-based artificial grassland (AG) and shrub-based artificial grassland (AS). Fungal community biomass, α-diversity and structure were studied using qPCR and Illumina Mesiq high-throughput sequencing technologies.【Result】1) grassland desertification significantly decreased soil fungal biomass and α-diversity, which showed no significant difference among AG, AS and NG after 22-year revegetation. 2) Both desertification and artificial revegetation significantly changed the fungal community structure. The relative abundance of Basidiomycota significantly (P<0.05) decreased after desertification. Some rare fungi phyla with less than 1% relative abundance tended to disappear, while the relative abundance of unclassified fungal phyla significantly (P<0.01) increased. After 22 years of revegetation, there was no significant difference in the relative abundance of most fungal phyla among AG, AS and NG. AG and NG showed more similar fungal structure than that of AS and NG. 3) The correlations of soil fungal α-diversity with vegetation and soil properties were diversity-index-dependent, while fungal structure significantly (P<0.01) positively correlated with most of vegetation and soil properties. Importantly, vegetation and soil properties jointly explained 21.4%-50.0% of variations in soil fungal community structure.【Conclusion】These findings indicate that fungal diversity and biomass in desertified grassland almost paralleled to the undegraded level after 22 years of revegetation. Despite fungal community structure in revegetation sites was still not similar to that of natural grassland, it is more beneficial to use grassland plants than shrub species for the restoration of soil fungal community structure in the degraded alpine grassland.

    参考文献
    [1] Sun H L,Zheng D,Yao T D,et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica,2012,67(1):3—12.[孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3—12.]
    [2] Zhou H K,Zhao X Q,Zhou L,et al. A study on correlations between vegetation degradation and soil degradation in the 'Alpine Meadow' of the Qinghai-Tibetan Plateau[J]. Acta Pratacultural Science,2005,14(3):31—40.[周华坤,赵新全,周立,等. 青藏高原高寒草甸的植被退化与土壤退化特征研究[J]. 草业学报,2005,14(3):31—40.]
    [3] Cai X B,Peng Y L,Wei S Z,et al. Variation of organic carbon and humus carbon in alpine steppe soil and functions of microorganisms therein[J]. Acta Pedologica Sinica,2014,51(4):834—844.[蔡晓布,彭岳林,魏素珍,等. 高寒草原土壤有机碳与腐殖质碳变化及其微生物效应[J]. 土壤学报,2014,51(4):834—844.]
    [4] Hao A H,Xue X,Peng F,et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica,2020,40(3):964—975.[郝爱华,薛娴,彭飞,等. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报,2020,40(3):964—975.]
    [5] Zhang Q,Ma L,Zhang Z H,et al. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region:Degradation status,restoration measures,effects and prospects[J]. Acta Ecologica Sinica,2019,39(20):7441—7451.[张骞,马丽,张中华,等. 青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望[J]. 生态学报,2019,39(20):7441—7451.]
    [6] Ma Y S,Zhang Z H,Dong Q M,et al. Application of restoration ecology in 'black soil type' degraded grassland rebuilding[J]. Journal of Gansu Agricultural University,2007,42(2):91—97.[马玉寿,张自和,董全民,等. 恢复生态学在"黑土型"退化草地植被改建中的应用[J]. 甘肃农业大学学报,2007,42(2):91—97.]
    [7] Legay N,Baxendale C,Grigulis K,et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities[J]. Annals of Botany,2014,114(5):1011—1021.
    [8] Murugan R,Loges R,Taube F,et al. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland[J]. Microbial Ecology,2014,67(4):907—918.
    [9] Deacon L J,Janie Pryce-Miller E,Frankland J C,et al. Diversity and function of decomposer fungi from a grassland soil[J]. Soil Biology & Biochemistry,2006,38(1):7—20.
    [10] Wang F,BAU T. Research advances in the diversity of soil fungi[J]. Journal of Fungal Research,2014,12(3):178—186.[王芳,图力古尔. 土壤真菌多样性研究进展[J]. 菌物研究,2014,12(3):178—186.]
    [11] Newsham K K,Hopkins D W,Carvalhais L C,et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic[J]. Nature Climate Change,2016,6(2):182—186.
    [12] Peay K G,Baraloto C,Fine P V. Strong coupling of plant and fungal community structure across western Amazonian rainforests[J]. The ISME Journal,2013,7(9):1852—1861.
    [13] Broeckling C D,Broz A K,Bergelson J,et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology,2008,74(3):738—744.
    [14] Shui W,Bai J P,Jian X M,et al. Changes in water conservation and soil physicochemical properties during the recovery of desertified grassland in Zoigê,China[J]. Acta Ecologica Sinica,2017,37(1):277—285.[税伟,白剑平,简小枚,等. 若尔盖沙化草地恢复过程中土壤特性及水源涵养功能[J]. 生态学报,2017,37(1):277—285.]
    [15] Wang Y N,Hu Y G,Wang Z R,et al. Impacts of desertification and artificial revegetation on soil bacterial community in alpine grassland[J]. Acta Prataculturae Sinica,2022,31(5):26—39.[王亚妮,胡宜刚,王增如,等. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J].草业学报,2022,31(5):26—39.]
    [16] Jiang Y M,Shi S L,Tian Y L,et al. Characteristics of soil microorganism and soil enzyme activities in alpine meadows under different degrees of degradation[J]. Journal of Soil and Water Conservation,2017,31(3):244—249.[蒋永梅,师尚礼,田永亮,等. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征[J]. 水土保持学报,2017,31(3):244—249.]
    [17] Peay K G,Kennedy P G,Talbot J M. Dimensions of biodiversity in the Earth mycobiome[J]. Nature Reviews Microbiology,2016,14(7):434—447.
    [18] Hu L F,Robert C A M,Cadot S,et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications,2018,9:2738.
    [19] Li Y M,Wang S P,Jiang L L,et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture,Ecosystems & Environment,2016,222:213—222.
    [20] Rong X S,He M,Wang C Y,et al. Analysis on the diversity of soil bacterial and fungal communities in the degraded alpine grassland in northern Tibet plateau[J]. Ecology and Environmental Sciences,2018,27(9):1646—1651.[荣新山,何敏,王从彦,等. 藏北退化高寒草原土壤细菌和真菌多样性分析[J]. 生态环境学报,2018,27(9):1646—1651.]
    [21] Lienhard P,Terrat S,Prévost-Bouré N C,et al. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland[J]. Agronomy for Sustainable Development,2014,34(2):525—533.
    [22] Treseder K K,Lennon J T. Fungal traits that drive ecosystem dynamics on land[J]. Microbiology and Molecular Biology Reviews,2015,79(2):243—262.
    [23] Maharachchikumbura S S N,Hyde K D,Jones E B G,et al. Towards a natural classification and backbone tree for Sordariomycetes[J]. Fungal Diversity,2015,72(1):199—301.
    [24] Yin Y L,Li S X,Ma Y S. Effects of replanting on soil fungal community characteristics in degraded alpine meadow[J]. Acta Agrestia Sinica,2020,28(6):1791—1797.[尹亚丽,李世雄,马玉寿. 人工补播对退化高寒草甸土壤真菌群落特征的影响[J]. 草地学报,2020,28(6):1791—1797.]
    [25] Gilbert G S,Webb C O. Phylogenetic signal in plant pathogen-host range[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(12):4979—4983.
    [26] Waldrop M P,Zak D R,Blackwood C B,et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters,2006,9(10):1127—1135.
    [27] Zhang J X,Wang Z Q,Quan X L,et al. Responses of soil microbial communities of sown perennial grassland in alpine region to different sowing ways and growth years[J]. Acta Agrestia Sinica,2021,29(2):270—280.[张杰雪,王占青,全小龙,等. 高寒地区人工草地土壤微生物群落对不同种植方式和年限的响应[J]. 草地学报,2021,29(2):270—280.]
    [28] Xiao Y N,Zhong X L,Wang B C,et al. Microbial community structure and function and their influencing factors in the soil of Horqin area of Tongliao City,Inner Mongolia[J]. Earth Science,2020,45(3):1071—1081.[肖玉娜,钟信林,王北辰,等. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素[J]. 地球科学,2020,45(3):1071—1081.]
    [29] Li H Y,Yao T,Gao Y M,et al. Relationship between soil fungal community and soil environmental factors in degraded alpine grassland[J]. Acta Microbiologica Sinica,2019,59(4):678—688.[李海云,姚拓,高亚敏,等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报,2019,59(4):678—688.]
    [30] McGuire K L,Fierer N,Bateman C,et al. Fungal community composition in neotropical rain forests:The influence of tree diversity and precipitation[J]. Microbial Ecology,2012,63(4):804—812.
    [31] Diao Z M. Study on microbial nitrogen physiological groups in alpine grassland[J]. Soils,1996,28(1):49—53.[刁治民. 高寒草地的微生物氮素生理群区系研究[J]. 土壤,1996,28(1):49—53.]
    [32] Yang T,Adams J M,Y. Shi Y et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau:associations with plant diversity and productivity[J]. New Phytologist,2017,215(2):756—765.
    [33] Qin L,Xu J,Ma X,et al. Research on symbiotical fungi species and ectomycorrhizae occurrence of chestnut(Castanea mollissima BL.)[J]. Journal of Beijing Agricultural College,1995,10(1):71—76.[秦岭,徐践,马萱,等. 板栗共生菌根真菌种类及其发生规律的研究[J]. 北京农学院学报,1995,10(1):71—76.]
    [34] Wu L K,Lin X M,Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology,2014,38(3):298—310.[吴林坤,林向民,林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报,2014,38(3):298—310.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王亚妮,胡宜刚,王增如,李以康,张振华,周华坤.人工植被重建对沙化高寒草地土壤真菌群落特征的影响[J].土壤学报,2023,60(1):280-291. DOI:10.11766/trxb202107050329 WANG Yani, HU Yigang, WANG Zengru, LI Yikang, ZHANG Zhenhua, ZHOU Huakun. Impacts of Artificial Revegetation on Soil Fungal Community in Desertified Alpine Grassland[J]. Acta Pedologica Sinica,2023,60(1):280-291.

复制
分享
文章指标
  • 点击次数:328
  • 下载次数: 1825
  • HTML阅读次数: 1447
  • 引用次数: 0
历史
  • 收稿日期:2021-07-05
  • 最后修改日期:2021-10-16
  • 录用日期:2021-12-05
  • 在线发布日期: 2022-01-25
文章二维码