还原态蒙脱石结构Fe(II)催化水铁矿转化特性及影响因素
作者:
中图分类号:

S158.5

基金项目:

国家自然科学基金项目(41771272,41702040)、湖南省自然科学基金项目(2021JJ40256)和湖南农业大学“双一流”建设项目(SYL2019043)共同资助


Characteristics and Influencing Factors of the Catalytic Transformation of Ferrihydrite by the Structural Fe(II) in Reduced Montmorillonite
Author:
Fund Project:

the National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    还原条件下土壤中Fe(II)催化水铁矿转化在调控营养元素和污染物的生物地球化学过程中具有重要作用。然而,作为土壤中Fe(II)存在的主要形态之一,蒙脱石结构中Fe(II)催化水铁矿转化的特性及其影响因素目前尚不清楚。以化学还原的蒙脱石为研究对象,探究还原态蒙脱石(rSWy-2)结构中Fe(II)催化水铁矿转化的特性及其影响因素。结果表明,贫铁的蒙脱石结构中Fe(II)可催化水铁矿向纤铁矿转化,反应96 h后水铁矿转化量达到83.3%。X射线衍射(XRD)、高分辨透射(HRTEM)、球差电镜(STEM)和表面吸附态Fe(II)含量分析表明,rSWy-2结构Fe(II)催化水铁矿转化主要经历矿物间固相吸附、电子传递和水铁矿转化三个阶段,形成的纤铁矿呈板状纳米片,尺寸大小为100~200 nm。溶液中Na+和Cl-离子对rSWy-2催化水铁矿转化影响较弱,而Ca2+、SO42-、有机质和As(III)均对水铁矿转化具有明显的抑制作用。

    Abstract:

    【Objective】Fe(II)-induced transformations of amorphous ferrihydrite to more crystalline iron oxide phases is a widely occurring geochemical process in soils under reduced conditions, and play an important role in regulating the biogeochemical processes of nutrient elements and pollutants. As one of the main species of Fe(II) in soils, Fe(II)-containing clay minerals are ubiquitous in soils under reduced conditions. However, the catalytic properties of structural Fe(II) in clay minerals for ferrihydrite transformation and its influencing factors are still not fully understood.【Method】In this study, the transformation of ferrihydrite induced by the structural Fe(II) in reduced montmorillonite (rSWy-2), which was produced by a chemical method, were investigated at neutral pH under anoxic conditions. Also, the influencing factors including types of cations and anions, organic matter, and As(III) on the transformation were studied.【Result】The X-ray diffraction (XRD) and chemical extraction analyses results showed that the structural Fe(II) in rSWy-2 with low Fe content can catalyze the transformation from ferrihydrite to more crystalline lepidocrocite, and 83.3% of initial ferrihydrite converted to lepidocrocite after mixing reaction for 96 h. XRD, high-resolution transmission electron microscope (HRTEM), scanning transmission electron microscopy (STEM) and surface adsorbed Fe(II) content analyses showed that the processes of ferrihydrite transformation induced by the structural Fe(II) in rSWy-2 mainly included three stages: Firstly, positively charged ferrihydrite nanoparticles adsorption on negatively charged rSWy-2 surface through electrostatic interaction. Secondly, interfacial electron transfer from the structural Fe(II) in rSWy-2 to the adsorbed ferrihydrite and partly reducing Fe(III) to surface adsorbed Fe(II). Finally, the surface adsorbed Fe(II) catalyzed the transformation of ferrihydrite to more crystalline lepidocrocite phases. HRTEM analyses showed that the formed lepidocrocite phases presented nanoplates with a size range of 100~200 nm. XRD and chemical extraction analyses results showed that Na+ and Cl- ions in the mineral suspension had a weak effect on the catalyzed transformation from ferrihydrite to lepidocrocite phases by the structural Fe(II) in rSWy-2. In contrast, Ca2+, SO42-, organic matter, and As(III) all had obvious inhibition on the transformation due to their strong interactions with minerals.【Conclusion】The structural Fe(II) in rSWy-2 could catalyze the transformation of ferrihydrite to lepidocrocite at neutral pH under anoxic conditions, and coexisting divalent cations and anions, As(III), and organic matter could inhibit the transformation reaction. The results provide a theoretical basis for further understanding the role of iron-bearing clay minerals in regulating abiotic transformations of iron oxides in soils under anaerobic reduction conditions.

    参考文献
    [1] Hu S W,Liang Y Z,Liu T X,et al. Kinetics of As(V) and carbon sequestration during Fe(II)-induced transformation of ferrihydrite-As(V)-fulvic acid coprecipitates[J]. Geochimica et Cosmochimica Acta,2020,272:160-176.
    [2] Zegeye A,Carteret C,Mallet M,et al. Effect of Sb on precipitation of biogenic minerals during the reduction of Sb-bearing ferrihydrites[J]. Geochimica et Cosmochimica Acta,2021,309:96-111.
    [3] Liu C S,Li F B,Chen M J,et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite[J]. Acta Chimica Sinica,2017,75(6):621-628.[刘承帅,李芳柏,陈曼佳,等. Fe(Ⅱ)催化水铁矿晶相转变过程中Pb的吸附与固定[J]. 化学学报,2017,75(6):621-628.]
    [4] Huang J Z,Jones A,Waite T D,et al. Fe(II) redox chemistry in the environment[J]. Chemical Reviews,2021,121(13):8161-8233.
    [5] Qafoku O,Kovarik L,Bowden M E,et al. Nanoscale observations of Fe(II)-induced ferrihydrite transformation[J]. Environmental Science:Nano,2020,7(10):2953-2967.
    [6] Sheng A X,Liu J,Li X X,et al. Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation[J]. Geochimica et Cosmochimica Acta,2020,272:105-120.
    [7] Boland D D,Collins R N,Miller C J,et al. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite[J]. Environmental Science & Technology,2014,48(10):5477-5485.
    [8] Hansel C M,Benner S G,Fendorf S. Competing Fe(II)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology,2005,39(18):7147-7153.
    [9] Liu C S,Zhu Z K,Li F B,et al. Fe(II)-induced phase transformation of ferrihydrite:The inhibition effects and stabilization of divalent metal cations[J]. Chemical Geology,2016,444:110-119.
    [10] Yang Z L,Zeng X B,Sun B H,et al. Research progress on the stability of ferrihydrite structure and its application in arsenic fixation[J]. Journal of Agro-Environment Science,2020,39(3):445-453.[杨忠兰,曾希柏,孙本华,等. 水铁矿结构稳定性及对砷固定研究与展望[J]. 农业环境科学学报,2020,39(3):445-453.]
    [11] Regelink I C,Voegelin A,Weng L P,et al. Characterization of colloidal Fe from soils using field-flow fractionation and Fe K-edge X-ray absorption spectroscopy[J]. Environmental Science & Technology,2014,48(8):4307-4316.
    [12] Chen C M,Kukkadapu R K,Lazareva O,et al. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and mössbauer spectroscopies[J]. Environmental Science & Technology,2017,51(14):7903-7912.
    [13] Jones A A,Saleh A M. A study of the thickness of ferrihydrite coatings on kaolinite[J]. Mineralogical Magazine,1987,51(359):87-92.
    [14] Zhao L D,Dong H L,Kukkadapu R,et al. Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002[J]. Geochimica et Cosmochimica Acta,2013,119:231-247.
    [15] Stucki J W. Chapter 8 Properties and behaviour of iron in clay minerals[J]. Developments in Clay Science,2006,1:423-475.
    [16] Liu X L,Dong H L,Zeng Q,et al. Synergistic effects of reduced nontronite and organic ligands on Cr(VI) reduction[J]. Environmental Science & Technology,2019,53(23):13732-13741.
    [17] Yuan S H,Liu X X,Liao W J,et al. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta,2018,223:422-436.
    [18] Liao W J,Yuan S H,Liu X X,et al. Anoxic storage regenerates reactive Fe(II) in reduced nontronite with short-term oxidation[J]. Geochimica et Cosmochimica Acta,2019,257:96-109.
    [19] Liao W J,Ye Z L,Yuan S H,et al. Effect of coexisting Fe(III) (oxyhydr)oxides on Cr(VI) reduction by Fe(II)-bearing clay minerals[J]. Environmental Science & Technology,2019,53(23):13767-13775.
    [20] Latta D E,Neumann A,Premaratne W A P J,et al. Fe(II)-Fe(III) electron transfer in a clay mineral with low Fe content[J]. ACS Earth and Space Chemistry,2017,1(4):197-208.
    [21] Yuan S H,Yao W Y,Zhang P,et al. Organic contaminant degradation by hydroxyl radicals produced from reduced montmorillonite under oxic conditions[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(3):485-489,439.[袁松虎,姚炜钰,张鹏,等. 还原态蒙脱石有氧条件产生羟自由基降解有机污染物[J]. 矿物岩石地球化学通报,2019,38(3):485-489,439.]
    [22] Guo L C,Wu J B,Xiong S F,et al. New sedimentary particle sorting process based on hydrostatic sedimentation method[J]. Journal of Earth Sciences and Environment,2016,38(5):694-699.[郭利成,吴佳斌,熊尚发,等. 基于静水沉降法的沉积物颗粒分选流程[J]. 地球科学与环境学报,2016,38(5):694-699.]
    [23] Stucki J W,Golden D C,Roth C B. Preparation and handling of dithionite-reduced smectite suspensions[J]. Clays and Clay Minerals,1984,32(3):191-197.
    [24] Yuan S H,Liu X X,Liao W J,et al. Mechanisms of electron transfer from structural Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta,2018,223:422-436.
    [25] Jaisi D P,Dong H L,Plymale A E,et al. Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite[J]. Chemical Geology,2009,264(1/2/3/4):127-138.
    [26] Peng C,Jiang B W,Liu Q,et al. Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols[J]. Energy & Environmental Science,2011,4(6):2035-2040.
    [27] Gao X D,Tian R,Liu X M,et al. Specific ion effects of Cu2+,Ca2+ and Mg2+ on montmorillonite aggregation[J]. Applied Clay Science,2019,179:105154.
    [28] Joe-Wong C,Brown G E Jr,Maher K. Kinetics and products of chromium(VI) reduction by iron(II/III)-bearing clay minerals[J]. Environmental Science & Technology,2017,51(17):9817-9825.
    [29] Gu C H,Wang Z M,Kubicki J D,et al. X-ray absorption spectroscopic quantification and speciation modeling of sulfate adsorption on ferrihydrite surfaces[J]. Environmental Science & Technology,2016,50(15):8067-8076.
    [30] Namayandeh A,Kabengi N. Calorimetric study of the influence of aluminum substitution in ferrihydrite on sulfate adsorption and reversibility[J]. Journal of Colloid and Interface Science,2019,540:20-29.
    [31] Liu J J,Louie S M,Pham C,et al. Aggregation of ferrihydrite nanoparticles:Effects of pH,electrolytes,and organics[J]. Environmental Research,2019,172:552-560.
    [32] Ying H,Feng X H,Zhu M Q,et al. Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions[J]. Environmental Science:Nano,2020,7(8):2385-2398.
    [33] Derakhshani E,Naghizadeh A. Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles[J]. Journal of Molecular Liquids,2018,259:76-81.
    [34] Xu H C,Ji L,Kong M,et al. Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment[J]. Chemical Engineering Journal,2019,363:356-364.
    [35] Li Z X,Shakiba S,Deng N,et al. Natural organic matter (NOM)imparts molecular-weight-dependent steric stabilization or electrostatic destabilization to ferrihydrite nanoparticles[J]. Environmental Science & Technology,2020,54(11):6761-6770.
    [36] Han L F,Yang Y,Sun K. Co-precipitation triggered molecular fractionation of dissolved organic matter at the ferrihydrite/water interface[J]. Acta Pedologica Sinica,2021,DOI:10.11766/trxb202009030393.[韩兰芳,杨妍,孙可. 共沉淀引发的溶解性有机质在水铁矿/水界面的分子分馏特性[J]. 土壤学报,2021,DOI:10.11766/trxb202009030393.]
    [37] ThomasArrigo L K,Byrne J M,Kappler A,et al. Impact of organic matter on iron(II)-catalyzed mineral transformations in ferrihydrite-organic matter coprecipitates[J]. Environmental Science & Technology,2018,52(21):12316-12326.
    [38] Wu C,An W H,Xue S G,et al. Arsenic biogeochemical processing in the soil-rice system[J]. Journal of Agro-Environment Science,2019,38(7):1429-1439.[吴川,安文慧,薛生国,等. 土壤-水稻系统砷的生物地球化学过程研究进展[J]. 农业环境科学学报,2019,38(7):1429-1439.]
    [39] Zuo H Y,Huang L Q,Chu R K,et al. Reduction of structural Fe(III) in nontronite by humic substances in the absence and presence of Shewanella putrefaciens and accompanying secondary mineralization[J]. American Mineralogist,2021,106(12):1957-1970.
    [40] Sun Z Y,Huang M Y,Liu C,et al. The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols:Implication of As(III) removal[J]. Water Research,2020,174:115631.
    [41] Li G L,Zhou C H,Fiore S,et al. Interactions between microorganisms and clay minerals:New insights and broader application[J]. Applied Clay Science,2019,177:91-113.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖文娟,彭薇,吴聪,宁雅琪,王帅,崔浩杰.还原态蒙脱石结构Fe(II)催化水铁矿转化特性及影响因素[J].土壤学报,2023,60(2):469-478. DOI:10.11766/trxb202111020410 LIAO Wenjuan, PENG Wei, WU Cong, NING Yaqi, WANG Shuai, CUI Haojie. Characteristics and Influencing Factors of the Catalytic Transformation of Ferrihydrite by the Structural Fe(II) in Reduced Montmorillonite[J]. Acta Pedologica Sinica,2023,60(2):469-478.

复制
分享
文章指标
  • 点击次数:775
  • 下载次数: 1707
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-02
  • 最后修改日期:2022-01-04
  • 录用日期:2022-03-03
  • 在线发布日期: 2022-03-09
  • 出版日期: 2023-03-28
文章二维码