红壤侵蚀区马尾松林恢复过程中土壤异养呼吸及微生物多样性的变化特征
作者:
中图分类号:

S153.6

基金项目:

国家自然科学基金项目(31870604,32030073)和福建省对外合作项目(2019I0010)资助


Changes in Soil Heterotrophic Respiration and Its Microbial Diversity during Restoration of Pinus massoniana Plantations in Eroded Red Soil Area
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 31870604 and 32030073) and the International Cooperation Project of Fujian Province, China (No. 2019I0010)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤异养呼吸是影响土壤有机碳积累的关键因素。以南方红壤水土流失区不同恢复年限的马尾松林(未治理地(Y0)、恢复14 a(Y14)、恢复31 a(Y31))为对象,对不同呼吸组分进行测定并结合温度、水分以及微生物等因子,研究马尾松林恢复对土壤异养呼吸的影响。结果表明:不同恢复年限马尾松林土壤异养呼吸差异显著,恢复31 a显著大于恢复14 a以及未治理地,未治理地异养呼吸速率仅为0.99 μmol·m–2·s–1,而治理14 a、31 a分别为2.20、2.80 μmol·m–2·s–1;温度是异养呼吸季节变化的主要影响因子,分别解释季节变化的40.6%(Y0)、62.2%(Y14)、66.6%(Y31);马尾松林恢复后土壤异养呼吸温度敏感性(Q10)显著增加,Y0、Y14、Y31的 Q10分别为1.58、1.93和1.82;不同恢复年限土壤异养呼吸占土壤总呼吸比例为77.94%(Y0)、70.84%(Y14)、77.35%(Y31)。结构方程表明,在马尾松林恢复过程中,土壤有机碳(SOC)、温度以及土壤微生物多样性变化是影响土壤异养呼吸变化的主要因子,其中SOC、土壤微生物与异养呼吸显著正相关,而植被恢复过程中土壤温度变化与异养呼吸显著负相关。本研究结果表明,马尾松林植被恢复过程中SOC的积累以及缺乏有效的物理保护增加了微生物对SOC的分解,另一方面土壤环境温度的降低和细菌、真菌丰度的增加以及群落中变形菌、子囊菌、酸杆菌的增加,更进一步加剧微生物对原有土壤有机质的分解强度,导致异养呼吸碳排放的持续增加,最终限制了马尾松林土壤碳吸存效率。因此,较高的土壤异养呼吸可能是影响红壤侵蚀退化区土壤有机质进一步提升的关键。

    Abstract:

    【Objective】 The accumulation rate of soil organic matter directly restricts the improvement of productivity of Pinus massoniana (Masson pine) in the process of vegetation restoration in eroded red soil area. The way to solve this problem has been an inevitable development process of Masson pine in eroded red soil area. Heterotrophic respiration, an important part of soil carbon emission, is a key factor affecting soil organic carbon accumulation. Therefore, it is of great significance to study the effects of Masson pine plantation restoration on heterotrophic respiration and its temperature sensitivity in eroded red soil areas. This will enhance our understanding of the carbon output process and effectively increase soil organic matter accumulation in eroded red soil areas. 【Method】 In this study, Masson pine plantations with different restoration years (Y0, Y14, Y31) were selected as the research objects. The effects of vegetation restoration on soil heterotrophic respiration were studied by separating and measuring different respiration components and combining with soil factors such as soil organic carbon, total nitrogen, soil temperature, water content and litter. The structural equation model of heterotrophic respiration between litter, soil temperature, soil nutrients, soil microorganisms and heterotrophic respiration were established to analyze the correlation between heterotrophic respiration and environmental factors in the process of vegetation restoration, and to explore the main factors affecting heterotrophic respiration. 【Result】 The results showed that the heterotrophic respiration (RH) of the pine forests with different recovery years differed significantly. The RH in site Y31 was significantly higher than that in site Y14 and Y0. The RH in site Y0 was only 0.99 μmol·m–2·s–1, while in sites Y14 and Y31 it was 2.20 and 2.80 μmol·m–2·s–1, respectively. Temperature was the main influencing factor of the seasonal variation of heterotrophic respiration, explaining 40.6%(Y0), 62.2%(Y14) and 66.6%(Y31) of the seasonal variation, respectively. During the restoration process, the temperature sensitivity(Q10)of relative humidity increased significantly, which was 1.58, 1.93 and 1.82, respectively. The relative contributions of RH to total soil respiration in different recovery years are 77.94%(Y0), 70.84%(Y14), and 77.35%(Y31). The structural equation model showed that soil organic carbon (SOC), temperature and soil microbial diversity were the main factors affecting soil RH during the restoration of Masson pine. SOC and soil microbial abundance significantly correlated with RH, and soil temperature varied with vegetation restoration which significantly and negatively correlated with RH. 【Conclusion】 The results of this study indicate that the accumulation of SOC and lack of effective physical protection during Masson pine vegetation restoration increase the decomposition of SOC by microorganisms; On the other hand, the reduction of soil environmental temperature, a continuous increase of bacteria and fungi abundance, and an increase of Proteobacteria, Ascomycota and Acidobacteria in the community further aggravate the microbes to the original strength of soil organic matter decomposition. Consequently, the continuous increase of heterotrophic respiration related carbon emissions limits the improvement of carbon sequestration efficiency of Masson pine forests. Therefore, the strong soil heterotrophic respiration in the eroded and degraded red soil area may be the key factor limiting further improvement of soil organic matter.

    参考文献
    [1] Hashimoto S. A new estimation of global soil greenhouse gas fluxes using a simple data-oriented model[J]. PLoS One,2012,7(8):e41962.
    [2] Bond-Lamberty B,Bailey V L,Chen M,et al. Globally rising soil heterotrophic respiration over recent decades[J]. Nature,2018,560(7716):80—83.
    [3] Tang J,Cheng H,Fang C. The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon[J]. PLoS One,2017,12(11):e0186675.
    [4] Tang X L,Du J,Shi Y H,et al. Global patterns of soil heterotrophic respiration-A meta-analysis of available dataset[J]. Catena,2020,191:104574.
    [5] Zheng H,Ouyang Z Y,Wang X K,et al. Effects of forest restoration types on soil quality in red soil eroded region,Southern China[J]. Acta Ecologica Sinica,2004,24(9):1994—2002.[郑华,欧阳志云,王效科,等. 不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J]. 生态学报,2004,24(9):1994—2002.]
    [6] He S J,Xie J S,Zeng H D,et al. Dynamic of soil organic carbon pool after restoration of Pinus massoniana in eroded red soil area[J]. Acta Ecologica Sinica,2013,33(10):2964—2973.[何圣嘉,谢锦升,曾宏达,等. 红壤侵蚀地马尾松林恢复后土壤有机碳库动态[J]. 生态学报,2013,33(10):2964—2973.]
    [7] Zhang Q F,Chen N S,Chen T,et al. Ecological stoichiometry characteristics of eroded red soil in different restoration years[J]. Science of Soil and Water Conservation,2016,14(2):59—66.[张秋芳,陈奶寿,陈坦,等. 不同恢复年限侵蚀红壤生态化学计量特征[J]. 中国水土保持科学,2016,14(2):59—66.]
    [8] Xu M,Shang H. Contribution of soil respiration to the global carbon equation[J]. Journal of Plant Physiology,2016,203:16—28.
    [9] Kukumägi M,Ostonen I,Uri V,et al. Variation of soil respiration and its components in hemiboreal Norway spruce stands of different ages[J]. Plant and Soil,2017,414(1):265—280.
    [10] Fang C,Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry,2001,33(2):155—165.
    [11] Hu S D,Li Y F,Chang S X,et al. Soil autotrophic and heterotrophic respiration respond differently to land-use change and variations in environmental factors[J]. Agricultural and Forest Meteorology,2018,250/251:290—298.
    [12] Han T F,Zhou G Y,Li Y L,et al. Partitioning soil respiration in lower subtropical forests at different successional stages in Southern China[J]. Chinese Journal of Plant Ecology,2011,35(9):946—954.[韩天丰,周国逸,李跃林,等. 中国南亚热带森林不同演替阶段土壤呼吸的分离量化[J]. 植物生态学报,2011,35(9):946—954.]
    [13] Li X F. Responses of soil respiration and its components to soil warming in natural forests of subtropical Castanopsis kawakamii and in Cunninghamia lanceolata plantations[D]. Fuzhou:Fujian Normal University,2018.[李先锋. 中亚热带格氏栲天然林和杉木人工林土壤呼吸及其组分对土壤增温的响应[D]. 福州:福建师范大学,2018.]
    [14] Wu J J,Yang Z J,Liu X F,et al. Analysis of soil respiration and components in Castanopsis carlesiiand Cunninghamia lanceo-lata plantations[J]. Chinese Journal of Plant Ecology,2014,38(1):45—53.[吴君君,杨智杰,刘小飞,等. 米槠和杉木人工林土壤呼吸及其组分分析[J]. 植物生态学报,2014,38(1):45—53.]
    [15] Lei L,Xiao W F,Zeng L X,et al. Responses of soil respiration and its components to forest management in Pinus massoniana stands[J]. Acta Ecologica Sinica,2016,36(17):5360—5370.[雷蕾,肖文发,曾立雄,等. 马尾松林土壤呼吸组分对不同营林措施的响应[J]. 生态学报,2016,36(17):5360—5370.]
    [16] Luo L,Shen G Z,Xie Z Q,et al. Components of soil respiration and its temperature sensitivity in four types of forests along an elevational gradient in Shennongjia,China[J]. Chinese Journal of Plant Ecology,2011,35(7):722—730.[罗璐,申国珍,谢宗强,等. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性[J]. 植物生态学报,2011,35(7):722—730.]
    [17] Chen G S,Yang Y S,Guo J F,et al. Relationships between carbon allocation and partitioning of soil respiration across world mature forests[J]. Plant Ecology,2011,212(2):195—206.
    [18] Xie W,Chen S T,Hu Z H. Factors influencing the variability in soil heterotrophic rspiration from terrestrial ecosystem in China[J]. Environmental Science,2014,35(1):334—340.[谢薇,陈书涛,胡正华. 中国陆地生态系统土壤异养呼吸变异的影响因素[J]. 环境科学,2014,35(1):334—340.]
    [19] Fierer N,Craine J M,Schimel M,et al. Litter quality and the temperature sensitivity of decomposition[J]. Ecology,2005,86(2):320—326
    [20] Fan Y X,Yang Y S,Guo J F,et al. Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China[J]. Chinese Journal of Plant Ecology,2014,38(11):1155—1165.[范跃新,杨玉盛,郭剑芬,等. 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化[J].植物生态学报,2014,38(11):1155—1165.]
    [21] Deng C. Effects of Pinus massoniana-dicranopteris dichotoma community restoration on soil respiration in eroded red soil areas[D]. Fuzhou:Fujian Normal University,2018.[邓翠. 红壤侵蚀区马尾松—芒萁群落恢复对土壤呼吸的影响[D]. 福州:福建师范大学,2018.]
    [22] Waseem H,Safdar B,Niaz A,et al. Labile organic carbon fractions,regulator of CO2 emission:Effect of plant residues and water regimes[J]. CLEAN-Soil,Air,Water,2016,44(10):1358—1367.
    [23] Zhang H,Lü M K,Xie J S. Effect of Dicranopteris dichotoma on soil microbial community structure in red soil erosion area[J]. Acta Ecologica Sinica,2018,38(5):1639—1649.[张浩,吕茂奎,谢锦升. 红壤侵蚀区芒萁对土壤微生物群落结构的影响[J]. 生态学报,2018,38(5):1639—1649.]
    [24] Iqbal J,Hu R,Feng M,et al. Microbial biomass,and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses:A case study at Three Gorges Reservoir Area,South China[J]. Agriculture,Ecosystems and Environment,2010,137(3):294—307.
    [25] Lü M K,Xie J S,Zhou Y X,et al. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area[J]. Chinese Journal of Applied Ecology,2014,25(1):37—44.[吕茂奎,谢锦升,周艳翔,等. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化[J]. 应用生态学报,2014,25(1):37—44.]
    [26] Qiu X,Lü M K,Huang J X,et al. Characteristics of soil organic carbon mineralization at different temperatures in severely eroded red soil[J]. Chinese Journal of Plant Ecology,2016,40(3):236—245.[邱曦,吕茂奎,黄锦学,等. 不同培养温度下严重侵蚀红壤的有机碳矿化特征[J]. 植物生态学报,2016,40(3):236—245.]
    [27] Bardgett R D,van der Putten W H.. Belowground biodiversity and ecosystem functioning[J]. Nature,2014,515(7528):505—511.
    [28] Zhang K R,Cheng X L,Shu X,et al. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment[J]. Plant and Soil,2018,431(1/2):19—36.
    [29] Yao F,Yang S,Wang Z R,et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient[J]. Frontiers in Microbiology,2017,8:2071.
    [30] Razanamalala K,Razafimbelo T,Maron P A,et al. Soil microbial diversity drives the priming effect along climate gradients:A case study in Madagascar.[J]. The ISME Journal,2018,12(2):451—462.
    [31] Zheng J,Chen J,Pan G,et al. A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition[J]. Applied Soil Ecology,2017,111:94—104.
    [32] Boddy L. Interspecific combative interactions between wood-decaying basidiomycetes[J]. FEMS Microbiology Ecology,2000,31(3):185—194.
    [33] Huang Q M,Huang J,Lü M K,et al. Effects of restoration duration,understory vegetation and seasons on soil nitrogen trans- formation in Pinus massoniana forests[J]. Chinese Journal of Ecology,2020,39(8):2556—2564.[黄桥明,黄俊,吕茂奎,等. 恢复年限、林下植被及季节对马尾松林土壤氮转化的影响[J]. 生态学杂志,2020,39(8):2556—2564.]
    [34] Cotrufo M F,Wallenstein M D,Boot C M,et al. The Microbial Efficiency-Matrix Stabilization(MEMS)framework integrates plant litter decomposition with soil organic matter stabilization:Do labile plant inputs form stable soil organic matter?[J] Global Change Biology,2013,19(4):988—995.
    [35] Chen R,Senbayram M,Blagodatsky S,et al. Soil C and N availability determine the priming effect:Microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology,2014,20(7):2356—2367.
    [36] Yang S. Temperature sensitivity of soil organic carbon mineralization in temperate forests in northeast China[D]. Shenyang:Shenyang Agricultural University,2019.[杨山. 东北温带森林土壤有机碳矿化温度敏感性研究[D]. 沈阳:沈阳农业大学,2019.]
    [37] Thiessen S,Gleixner G,Wutzler T,et al. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-An incubation study[J]. Soil Biology and Biochemistry,2013,57:739—748.
    [38] Lange O L,Green T G A. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature[J]. Oecologia,2005,142(1):11—19.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜永孟,邓翠,吕茂奎,熊小玲,李佳玉,谢锦升.红壤侵蚀区马尾松林恢复过程中土壤异养呼吸及微生物多样性的变化特征[J].土壤学报,2023,60(4):1156-1168. DOI:10.11766/trxb202110240498 JIANG Yongmeng, DENG Cui, LYU Maokui, XIONG Xiaoling, LI Jiayu, XIE Jinsheng. Changes in Soil Heterotrophic Respiration and Its Microbial Diversity during Restoration of Pinus massoniana Plantations in Eroded Red Soil Area[J]. Acta Pedologica Sinica,2023,60(4):1156-1168.

复制
分享
文章指标
  • 点击次数:407
  • 下载次数: 1623
  • HTML阅读次数: 1016
  • 引用次数: 0
历史
  • 收稿日期:2021-10-24
  • 最后修改日期:2022-03-07
  • 录用日期:2022-05-16
  • 在线发布日期: 2022-05-25
  • 出版日期: 2023-07-28
文章二维码