农业生产对石灰性土壤无机碳库损失的影响
作者:
作者单位:

西北农林科技大学资源环境学院/农业农村部西北植物营养与农业环境重点实验室

中图分类号:

S153

基金项目:

国家自然科学基金项目(41671295)资助


Effects of Agricultural Production on the Loss of Inorganic Carbon from Calcareous Soils
Author:
Affiliation:

College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling

Fund Project:

Supported by the National Natural Science Foundation of China (No. 41671295)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [79]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    一般认为,土壤无机碳(SIC)周转缓慢,在全球农田碳循环及应对气候变化等方面的作用有限。近年来越来越多的证据表明,土壤无机碳转化速率也较快,在土壤肥力、碳库转化和调节大气二氧化碳浓度方面的作用不容小觑。总结了国内外关于农田无机碳方面的研究进展,强调无机碳在农田土壤固碳、缓冲土壤pH等方面具有重要作用;农业生产特别是氮肥大量施用导致我国一些地区农田无机碳消耗,加速土壤酸化,增加了作物重金属污染风险,影响了农田土壤健康。认为我国“秦岭-淮河”南北分界区非石灰性土壤与石灰性过渡区、山东半岛棕壤与潮土过渡区、东北黑土与黑钙土过渡区等区域SIC含量相对较低、降水量相对较高,长期大量施用氮肥会导致农田表层SIC发生损失,属SIC损失敏感区。提出应进一步研究的问题,包括:查明农业生产特别是施用氮肥对土壤无机碳去向的影响,研究土壤有机碳-二氧化碳-钙离子-无机碳相互作用机理及对氮肥的响应,在全球碳循环及土壤碳收支平衡研究中,应考虑人类活动特别是农业生产对土壤无机碳库的影响。建议定期监测我国无机碳损失敏感区农田土壤无机碳含量,合理施肥以减少土壤无机碳损失。

    Abstract:

    The turnover of soil inorganic carbon (SIC) is considered slowly and its role in carbon sequestration and climate change is limited. Therefore, the role of SIC in croplands to the global carbon cycle is rarely investigated. In recent years, more evidences have indicated that the turnover rate of SIC is much faster than was thought. This suggests that its roles in stabilizing soil fertility, global carbon pool, and regulating the concentration of carbon dioxide (CO2) in the atmosphere should not be ignored. Therefore, we have reviewed recent advances on SIC in croplands, paying special emphasis on the important role of SIC in sequestrating carbon and buffering soil pH. SIC loss in China induced by agricultural production, especially the application of nitrogen (N) fertilizers affects the health of croplands by accelerating soil acidification and increasing the risk of heavy metals pollution. Soils in the transition zones between the North and the South China (Qinling Huaihe River), brown soil and alluvial soil in the Shandong Peninsula, black soil and chernozem in Northeast China, have low carbonates and a vulnerable pool of SIC that is easily lost. Thus, we suggest that these regions should be designated as SIC loss vulnerable zones. For further studies, the following topics should be considered (i) understanding the fates of SIC and interactions of soil organic carbon-CO2- Ca-SIC in cropland induced by agricultural production, especially adding N fertilizers; (ii) SIC roles in carbon soil balance and cycle; and (iii) regular monitoring of the SIC content in the vulnerable zones. Also, for a sustainable reduction of SIC loss induced by soil acidification, the following measures should be considered: adequate application of N fertilizers, combining the application of N fertilizers with organic fertilizer and nitrification inhibitors and replacing the ammonium bearing fertilizers with nitrate fertilizer.

    参考文献
    [1] Richter D D,Markewitz D,Trumbore S E,et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature,1999,400(6739):56—58.
    [2] Gai X,Liu H,Liu J,et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain[J]. Agricultural Water Management,2018,208:384—392.
    [3] Hein C J,Usman M,Eglinton T I,et al. Millennial-scale hydroclimate control of tropical soil carbon storage[J]. Nature,2020,581(7806):63—66.
    [4] Magaritz M,Amiel A J. Influence of intensive cultivation and irrigation on soil properties in the Jordan Valley,Israel:Recrystallization of carbonate minerals[J]. Soil Science Society of America Journal,1981,45(6):1201—1205.
    [5] Kim J H,Jobbágy E G,Richter D D,et al. Agricultural acceleration of soil carbonate weathering[J]. Global Change Biology,2020,26(10):5988—6002.
    [6] An H,Wu X,Zhang Y,et al. Effects of land-use change on soil inorganic carbon:A meta-analysis[J]. Geoderma,2019,353:273—282.
    [7] Wu H,Guo Z,Gao Q,et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture,Ecosystems & Environment,2009,129(4):413—421.
    [8] Gallagher T M,Breecker D O. The obscuring effects of calcite dissolution and formation on quantifying soil respiration[J]. Global Biogeochemical Cycles,2020,34(12):e2020GB006584.
    [9] Li Y,Wang Y G,Tang L S.The effort to re-activate the inorganic carbon in soil[J]. Acta Pedologica Sinica,2016,53(4):845—849.[李彦,王玉刚,唐立松. 重新被"激活"的土壤无机碳研究[J]. 土壤学报,2016,53(4):845—849.]
    [10] Inglima I,Alberti G,Bertolini T,et al. Precipitation pulses enhance respiration of Mediterranean ecosystems:The balance between organic and inorganic components of increased soil CO2 efflux[J]. Global Change Biology,2009,15(5):1289—1301.
    [11] Sanderman J. Can management induce changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia[J]. Agriculture,Ecosystems & Environment,2012,155:70—77.
    [12] Canfield D E,Glazer A N,Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science,2010,330(6001):192—196.
    [13] Galloway J N,Leach A M,Bleeker A,et al. A chronology of human understanding of the nitrogen cycle[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1621):20130120.
    [14] Gandois L,Perrin A,Probst A. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents:A column experiment[J]. Geochimica et Cosmochimica Acta,2011,75(5):1185—1198.
    [15] Li Z P,Han F X,Su Y,et al. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma,2007,138(1):119—126.
    [16] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47(2):151—163.
    [17] Filippi P,Cattle S R,Pringle M J,et al. A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon[J]. Geoderma,2020,371:114382.
    [18] Huo H X,Zhang J G,Ma A S,et al. Progress and prospects of soil carbon cycle in arid deserts[J]. Journal of Northwest Forestry University,2018,33(1):98—104.[霍海霞,张建国,马爱生,等. 干旱荒漠区土壤碳循环研究进展与展望[J]. 西北林学院学报,2018,33(1):98—104.]
    [19] Zamanian K,Pustovoytov K,Kuzyakov Y. Pedogenic carbonates:Forms and formation processes[J]. Earth-Science Reviews,2016,157:1—17.
    [20] Beerling D J,Kantzas E P,Lomas M R,et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature,2020,583(7815):242—248.
    [21] Zhang F R,Li L J. Discrimination on the occurrence and classification of cinnamon soil in Beijing area[J]. Chinese Journal of Soil Science,1989,21(2):58—61.[张凤荣,李连捷. 关于北京地区褐土的发生与分类问题的辩析[J]. 土壤通报,1989,21(2):58—61.]
    [22] Li C,Zhang F R,Wang X L,et al. Vertical distribution of soil CaCO3 content/lime reaction in mountainous regions of North China and its genetic explanation[J]. Acta Pedologica Sinica,2018,55(5):1074—1084.[李超,张凤荣,王秀丽,等. 华北山地土壤CaCO3含量/石灰反应垂直分布特征及其发生学解释[J]. 土壤学报,2018,55(5):1074—1084.]
    [23] Tan M X,Liu L,Wang P S,et al. Effect of Microtopography on the acidification characteristics of soils developed from purple parent rock[J]. Acta Pedologica Sinica,2018,55(6):1441—1449.[谭孟溪,刘莉,王朋顺,等. 微地形作用下紫色母岩发育土壤的酸化特征[J]. 土壤学报,2018,55(6):1441—1449.]
    [24] Mi N A,Wang S,Liu J,et al. Soil inorganic carbon storage pattern in China[J]. Global Change Biology,2008,14(10):2380—2387.
    [25] Gocke M,Kuzyakov Y. Effect of temperature and rhizosphere processes on pedogenic carbonate recrystallization:Relevance for paleoenvironmental applications[J]. Geoderma,2011,166(1):57—65.
    [26] Li Y,Zhang C,Wang N,et al. Substantial inorganic carbon sink in closed drainage basins globally[J]. Nature Geoscience,2017,10(7):501—506.
    [27] Schlesinger W H. Carbon storage in the caliche of arid soils:A case study from Arizona[J]. Soil Science,1982,133(4):247—255.
    [28] Pan G X. Pedogenic carbonates in aridic soils of China and the significance in terrestrial carbon transfer[J]. Journal of Nanjing Agricultural University,1999,22(1):54—60.[潘根兴. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J]. 南京农业大学学报,1999,22(1):54—60.]
    [29] Wang X L,Zhang F R,Wu H,et al. Effect of loess dust on soil properties in Beijing mountainous areas[J]. Chinese Journal of Soil Science,2013,44(3):522—525.[王秀丽,张凤荣,吴昊,等. 黄土降尘对北京山地土壤性质的影响[J]. 土壤通报,2013,44(3):522—525.]
    [30] Liu S,Zhou L,Li H,et al. Shrub encroachment decreases soil inorganic carbon stocks in Mongolian grasslands[J]. Journal of Ecology,2020,108(2):678—686.
    [31] Aquilina L,Poszwa A,Walter C,et al. Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments[J]. Environmental Science & Technology,2012,46(17):9447—9455.
    [32] Groshans G R,Mikhailova E A,Post C J,et al. Accounting for soil inorganic carbon in the ecosystem services framework for United Nations sustainable development goals[J]. Geoderma,2018,324:37—46.
    [33] Wang C,Li W,Yang Z,et al. An invisible soil acidification:Critical role of soil carbonate and its impact on heavy metal bioavailability[J]. Scientific Reports,2015,5(1):12735
    [34] Slessarev E W,Lin Y,Bingham N L,et al. Water balance creates a threshold in soil pH at the global scale[J]. Nature,2016,540(7634):567—569.
    [35] Raza S,Miao N,Wang P,et al. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands[J]. Global Change Biology,2020,26(6):3738—3751.
    [36] Wang J D,Qi B J,Zhang Y C,et al. Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil[J]. Chinese Journal of Applied Ecology,2012,23(4):1031—1036.[汪吉东,戚冰洁,张永春,等. 长期施肥对砂壤质石灰性潮土土壤酸碱缓冲体系的影响[J]. 应用生态学报,2012,23(4):1031—1036.]
    [37] Huang P,Zhang J,Xin X,et al. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain[J]. Journal of Integrative Agriculture,2015,14(1):148—157.
    [38] Zhu Q C,Liu X J,Hao T X,et al. Modeling soil acidification in typical Chinese cropping systems[J]. Science of the Total Environment,2018,613/614:1339—1348.
    [39] Eldor A P. Soil microbiology,ecology,and biochemistry[M]. 3rd ed. Cambridge,Massachusetts:Academic Press,2008.
    [40] Wu Z,Sun X,Sun Y,et al. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018[J]. Geoderma,2022,408:115586.
    [41] Perrin A,Probst A,Probst J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments:Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta,2008,72(13):3105—3123.
    [42] Rey A. Mind the gap:Non-biological processes contributing to soil CO2 efflux[J]. Global Change Biology,2015,21(5):1752—1761.
    [43] Zamanian K,Zarebanadkouki M,Kuzyakov Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon:A global assessment[J]. Global Change Biology,2018,24(7):2810—2817.
    [44] Perrin A,Probst A,Probst J. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments:Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta,2008,72(13):3105—3123.
    [45] Gallagher T M,Breecker D O. The obscuring effects of calcite dissolution and formation on quantifying soil respiration[J]. Global Biogeochemical Cycles,2020,34(12):e2020G—e6584G.
    [46] Song X D,Yang F,Wu H Y,et al. Significant loss of soil inorganic carbon at the continental scale[J]. National Science Review,2021,nwab120.
    [47] Sun Z A,Zhao Y,Zhu B,et al. Rhizosphere effects of maize on inorganic and organic carbon release in calcareous soils[J]. Acta Pedologica Sinica,2021,58(4):998—1007.[孙昭安,赵诣,朱彪,等. 玉米生长对石灰性土壤无机碳与有机碳释放的根际效应[J]. 土壤学报,2021,58(4):998—1007.]
    [48] Sun Z A,Zhang B R,He M Y,et al. Three-source partitioning of CO2 emissions from maize-planted soil using 13C labeling and natural abundance[J]. Acta Pedologica Sinica,2021,58(5):1256—1266.[孙昭安,张保仁,何敏毅,等.利用13C标记和自然丰度三源区分玉米根际CO2释放[J]. 土壤学报,2021,58(5):1256—1266.]
    [49] Niu Z R,Wang Y G,Deng C Y,et al. Effects of tillage on inorganic carbon in upper soil profiles in arid zone[J]. Chinese Journal of Ecology,2016,35(10):2714—2721.[牛子儒,王玉刚,邓彩云,等. 耕作对干旱区表层土壤无机碳的影响[J]. 生态学杂志,2016,35(10):2714—2721.]
    [50] Yang Y,Fang J,Ji C,et al. Widespread decreases in topsoil inorganic carbon stocks across China's grasslands during 1980s–2000s[J]. Global Change Biology,2012,18(12):3672—3680.
    [51] Wang X J,Wang J P,Xu M G,et al. Carbon accumulation in arid croplands of northwest China:Pedogenic carbonate exceeding organic carbon[J]. Scientific Reports,2015,5:11439.
    [52] Wang X J,Xu M G,Wang J P,et al. Fertilization enhancing carbon sequestration as carbonate in arid cropland:Assessments of long-term experiments in Northern China[J]. Plant and Soil,2014,380(1/2):89—100.
    [53] Ata-Ul-Karim S T,Cang L,Wang Y,et al. Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat(Triticum aestivum L.)grain[J]. Geoderma,2020,357:113923.
    [54] Wei B,Yu J,Cao Z,et al. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application[J]. International Journal of Environmental Research and Public Health,2020,17(15):5359.
    [55] Dou W Q,An Y,Qin L,et al.Advances in effects of soil pH on cadmium form[J]. Soils,2020,52(3):439–444.[窦韦强,安毅,秦莉,等. 土壤pH对镉形态影响的研究进展[J]. 土壤,2020,52(3):439—444.]
    [56] Sparks D. Environmental soil chemistry[M]. Cambridge,Massachusetts:Academic Press,2003.
    [57] Guo J H,Liu X J,Zhang Y,et al. Significant acidification in major Chinese croplands[J]. Science,2010,327(5968):1008—1010.
    [58] Hall A D & Miller N H J. The effect of plant growth and manures upon the retention of bases by the soil[J]. Proceedings of the Royal Society B,1905,77,1—32.
    [59] Bolton J. Changes in magnesium and calcium in soils of the Broadbalk wheat experiment at Rothamsted from 1865 to 1966[J]. The Journal of Agricultural Science,1972,79(2):217—223.
    [60] Poulton P R. Management and modification procedures for long-term field experiments[J]. Canadian Journal of Plant Science,1996,76(4):587—594.
    [61] Li D C,Zhang G L,Wang H. Soil series of China,Anhui[M]. Beijing:Science Press,2017.[李德成,张甘霖,王华. 中国土系志(安徽卷)[M]. 北京:科学出版社,2017.]
    [62] Li X H,Li F C,Liu J S,et al. Changes of different carbon fractions caused by long-term N fertilization in dryland soil of the loess plateau[J]. Scientia Agricultura Sinica,2014,47(14):2795—2803.[李小涵,李富翠,刘金山,等. 长期施氮引起的黄土高原旱地土壤不同形态碳变化[J]. 中国农业科学,2014,47(14):2795—2803.]
    [63] Heimann L,Roelcke M,Hou Y,et al. Nutrients and pollutants in agricultural soils in the peri-urban region of Beijing:Status and recommendations[J]. Agriculture,Ecosystems & Environment,2015,209:74—88.
    [64] Dong W,Duan Y,Wang Y,et al. Reassessing carbon sequestration in the North China Plain via addition of nitrogen[J]. Science of the Total Environment,2016,563:138—144.
    [65] Huang B,Wang J G,Jin H Y,et al. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil[J]. Journal of Agro-Environment Science,2006,25(1):161—164.[黄斌,王敬国,金红岩,等. 长期施肥对我国北方潮土碳储量的影响[J]. 农业环境科学学报,2006,25(1):161—164.]
    [66] Qiu S,Gao H,Zhu P,et al. Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers,straw or manures[J]. Soil and Tillage Research,2016,163:255—265.
    [67] Meng Y,Li X S,Hao P Q,et al. Effect of different N fertilizer applications on CO2 emissions from Lou soil in Central Shaanxi[J]. Journal of Agro-Environment Science,2017,36(9):1901—1907.[孟延,李雪松,郝平琦,等. 施用不同种类氮肥对陕西关中地区塿土碳释放的影响[J]. 农业环境科学学报,2017,36(9):1901—1907.]
    [68] Yu W J,Li X S,Chen Z J,et al. Effects of nitrogen fertilizer application on carbon dioxide emissions from soils with different inorganic carbon contents[J]. Chinese Journal of Applied Ecology,2018,29(8):2493—2500.[于伟家,李雪松,陈竹君,等. 氮肥对不同无机碳含量土壤二氧化碳释放的影响[J]. 应用生态学报,2018,29(8):2493—2500.]
    [69] Wang Q Y,Zhang J B,Zhao B Z,et al. Effects of long-term fertilization on calcium and magnesium morphological transformation and environmental behavior in typical fluvo-aquic soil[J]. Soils,2020,52(3):476—481.[王擎运,张佳宝,赵炳梓,等. 长期施肥对典型潮土钙,镁形态转化及其环境行为的影响[J]. 土壤,2020,52(3):476—481.]
    [70] Raza S,Kuzyakov Y,Zhou J B. Facts to acidification‐induced carbonate losses from Chinese croplands[J]. Global Change Biology,2021,27(5):e7—e10
    [71] Greaver T L,Clark C M,Compton J E,et al. Key ecological responses to nitrogen are altered by climate change[J]. Nature Climate Change,2016,6(9):836—843.
    [72] Zamanian K,Zhou J B,Kuzyakov Y. Soil carbonates:The unaccounted,irrecoverable carbon source. Geoderma,2021,384:114817.
    [73] Dong YJ,Cai M,Liang B,et al. Effect of additional carbonates on CO2 emission from calcareous soil during the closed-jar incubation[J]. Pedosphere,2013,23(2):137—142.
    [74] de Shorn E B,Gouveia G A,Ramnarine R,et al. Short-term effects of aglime on inorganic-and organic-derived CO2 emissions from two acid soils amended with an ammonium-based fertiliser[J]. Journal of Soils and Sediments,2020,20(1):52—65.
    [75] Bai X L,Zhang Z B,Cui J J,et al. Strategies to mitigate nitrate leaching in vegetable production in China:A meta-analysis[J]. Environmental Science and Pollution Research,2020,27(15):18382—18391.
    [76] Hua W,Luo P,An N,et al. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation[J]. Scientific Reports,2020,10(1):14882.
    [77] Han P H,Min J,Zhu H T,et al. Fertilization status and soil physiochemical properties of greenhouse vegetable system in Yangtze river delta[J]. Soils,2020,52(5):994—1000.[韩沛华,闵炬,诸海焘,等. 长三角地区设施蔬菜施肥现状及土壤性状研究[J]. 土壤,2020,52(5):994—1000.]
    [78] Xu R K,Li J Y,Zhou S W,et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences,2018,33(2):160—167.[徐仁扣,李九玉,周世伟,等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊,2018,33(2):160—167.]
    [79] Li X S,Raza S,Liu Z J,et al. Effects of application of nitrogen fertilizer and nitrification inhibitor on carbon dioxide emissions from calcareous soil[J]. Journal of Agro-Environment Science,2017,36(8):1658—1663.[李雪松,Sajjad Raza,刘占军,等. 氮肥及硝化抑制剂配合施用对石灰性土壤二氧化碳释放的影响[J]. 农业环境科学学报,2017,36(8):1658—1663.]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周建斌,陶静静,赵梦真,崔娇娇,刘占军,陈竹君.农业生产对石灰性土壤无机碳库损失的影响[J].土壤学报,2022,59(3):593-602. DOI:10.11766/trxb202109270522 ZHOU Jianbin, TAO Jingjing, ZHAO Mengzhen, CUI Jiaojiao, LIU Zhanjun, CHEN Zhujun. Effects of Agricultural Production on the Loss of Inorganic Carbon from Calcareous Soils[J]. Acta Pedologica Sinica,2022,59(3):593-602.

复制
分享
文章指标
  • 点击次数:1079
  • 下载次数: 2288
  • HTML阅读次数: 1306
  • 引用次数: 0
历史
  • 收稿日期:2021-09-27
  • 最后修改日期:2022-01-05
  • 录用日期:2022-01-25
  • 在线发布日期: 2022-01-26
文章二维码