我国主要麦区土壤有效铁锰铜锌丰缺状况评价及影响因素
作者:
中图分类号:

S158.9

基金项目:

国家现代农业产业技术体系建设专项项目(CARS-3)、国家重点研发计划项目(2021YFD1900700)和山西省高等学校科技创新项目(2021L167)共同资助


Evaluations and Influencing Factors of Soil Available Fe, Mn, Cu and Zn Concentrations in Major Wheat Production Regions of China
Author:
Fund Project:

Supported by the Modern Agricultural Research System of China (No. CARS-3), the National Key Research and Development Program of China (No. 2021YFD1900700), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (No. 2021L167)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    明确我国主要麦区土壤有效铁锰铜锌含量分布和影响因素,对了解麦田土壤微量元素供应能力、指导小麦丰产与优质生产至关重要。于2016—2021年连续6年,在我国17个小麦主产省/市采集1 314份耕层土壤样品,参考中国土壤有效微量元素分级标准,评价了我国麦田土壤有效铁锰铜锌丰缺状况,并采用随机森林方法定量分析了主要土壤化学性质对铁锰铜锌有效性的贡献。结果表明,我国主要麦区土壤有效铁含量介于1.8~612 mg·kg-1,平均为49.1 mg·kg-1,8.9%的样本未达到缺铁临界值4.5 mg·kg-1,且主要集中在北方、西北麦区的山西、陕西、甘肃等地,西南和长江中下游麦区有效铁较高。土壤有效锰介于0.1~176 mg·kg-1,平均为22.1 mg·kg-1,低于缺锰临界值5 mg·kg-1的样本占6.9%,缺锰土壤分布在西北、北方麦区的山西、陕西、甘肃、内蒙古等地,西南、长江中下游麦区土壤有效锰含量较高。土壤有效铜介于0.1~10.8 mg·kg-1,平均为1.9 mg·kg-1,仅1.8%样本未达到缺铜临界值0.5 mg·kg-1。土壤有效锌介于0.1~26.0 mg·kg-1,平均为1.4 mg·kg-1,14.3%的样本低于缺锌临界值0.5 mg·kg-1,主要分布在西北和北方麦区的山西、陕西、甘肃、内蒙古等省份,云南、贵州等西南麦区的有效锌较高。土壤基本化学性质中,pH对有效铁、有效锰含量影响最大,有效铁是铜有效性的重要因素,影响有效锌的主要因素是有效磷和有效铜。我国麦田土壤有效铁锰铜锌含量存在较大的区域变异,铁、锰、锌不足主要发生在北方石灰性土壤,南方麦田供应充足,几乎所有麦田土壤有效铜可满足作物铜需求。

    Abstract:

    【Objective】It is of great importance to clarify the current regional distributions and influencing factors of soil available iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations. This will improve understanding of the soil micronutrient supply abilities and guarantee high-yield and high-quality wheat in major wheat production regions of China.【Method】During 2016 to 2021, a successive 6-year in situ farm survey was conducted in combination with the collection of topsoil (0-20 cm) samples from 1 314 randomly selected farmland fields in 17 major wheat production provinces and regions in China. The soil-available Fe, Mn, Cu and Zn concentrations were determined to evaluate their abundance and deficiency status based on China’s classification criteria for soil-available micronutrients. Also, it was quantified the contribution of main soil chemical properties on Fe, Mn, Cu and Zn availabilities by random forest analysis.【Result】Results showed that the soil available Fe ranged from 1.8 to 611.9 mg·kg-1, with an average of 49.1 mg·kg-1, and 8.9% of samples had lower soil available Fe than the Fe deficiency threshold of 4.5 mg·kg-1. Soils with relatively low available Fe were usually observed in the provinces of Shanxi, Shaanxi and Gansu in northern and northwestern wheat production regions, while high-Fe soils were found in southwestern and middle and lower Yangtze River wheat regions. Also, soil available Mn ranged from 0.1 to 176.2 mg·kg-1, with an average of 22.1 mg·kg-1, and 6.9% of samples exhibited lower soil available Mn than the Mn-deficient threshold of 5.0 mg·kg-1. Mn-deficient soils were mainly distributed in Shanxi, Shaanxi, Gansu provinces and Inner Mongolia Autonomous Region in northern and northwestern wheat growing regions, while soils with high and very high available Mn often occurred in southwestern and middle and lower Yangtze River wheat regions. Soil available Cu ranged from 0.1 to 10.8 mg·kg-1, with an average of 1.9 mg·kg-1, and only 1.8% of samples had lower available Cu than the Cu-deficient critical value of 0.5 mg·kg-1. Soil available Zn ranged from 0.1 mg·kg-1 to 26.0 mg·kg-1, with an average of 1.4 mg·kg-1, and 14.3% of samples’ available Zn was lower than the Zn deficiency threshold of 0.5 mg·kg-1. Zn-deficient soils were mainly found in Shanxi, Shaanxi, Gansu provinces and Inner Mongolia Autonomous Region of northern and northwestern wheat production regions, and higher Zn concentrations were mainly observed in soils of Yunnan and Guizhou provinces of southwestern wheat regions. Among the investigated soil chemical properties, the pH was the most important influencing factor to available Fe and Mn, and available Fe contributed to the highest Cu availability, and available phosphorus, followed by Cu, was found to be the leading factor for soil available Zn in major wheat production regions of China. 【Conclusion】 There were large regional variations in the soil-available Fe, Mn, Cu, and Zn concentrations in China’s wheat fields. Deficiencies of soil available Fe, Mn and Zn were serious problems on calcareous soils in the northern part, and higher supplies of these micro-elements occurred in the southern part, while almost all of the wheat fields were not identified as Cu-deficient soil in China.

    参考文献
    [1] Wang Z W,Xu L M,Zhang W J. Corresponding relationship between trace elements soil and human activity intensity[J]. Chinese Journal of Soil Science,2002,33(4):303-305. [王祖伟,徐利淼,张文具. 土壤微量元素与人类活动强度的对应关系[J]. 土壤通报,2002,33(4):303-305.]
    [2] National Bureau of Statistics of the People’s Republic of China. China statistical yearbook 2021[M]. Beijing:China Statistics Press,2021. [中华人民共和国国家统计局.中国统计年鉴2021[M]. 北京:中国统计出版社,2021.]
    [3] Freddy N. Status of the world’s soil resources [M]. Beijing:China Agricultural Science and Technology Press,2018. [(比)弗雷迪·纳克加勒. 世界土壤资源状况[M]. 北京:中国农业科学技术出版社,2018.]
    [4] Fan M X,Glany A,Das S,et al. Lack of micronutrients in Asian soils[J]. World Agriculture,2016(12):182-184. [樊明宪,安德鲁·格林,苏米特拉·达斯,等. 亚洲土壤中微量营养元素的缺乏[J]. 世界农业,2016(12):182-184.]
    [5] Liu Z,Zhu Q Q,Tang L H,et al. Geographical distribution of trace elements deficient soils in China[J]. Acta Pedologica Sinica,1982,19(3):209-223. [刘铮,朱其清,唐丽华,等. 我国缺乏微量元素的土壤及其区域分布[J]. 土壤学报,1982,19(3):209-223.]
    [6] Yu C Z,Peng L,Liu Y H,et al. Content and distribution of trace elements and fertilizer efficiency in soils of loessal region[J]. Acta Pedologica Sinica,1991,28(3):317-326. [余存祖,彭琳,刘耀宏,等. 黄土区土壤微量元素含量分布与微肥效应[J]. 土壤学报,1991,28(3):317-326.]
    [7] Yang D G,Cheng Y A,Wen Y M,et al. Investigations on the content,distribution and availability of trace elements in the soils of Sichuan Basin[J]. Acta Pedologica Sinica,1985,22(2):157-166. [杨定国,成延鏊,温琰茂,等. 四川盆地土壤中微量元素的含量分布及其有效性的研究[J]. 土壤学报,1985,22(2):157-166.]
    [8] Zhao C C,Wang Y,Gao R M. Soil trace element abundance in different forest types at the Loess hilly region of Qinghai Province [J]. Journal of Arid Land Resources and Environment,2017,31(3):130-135. [赵串串,王媛,高瑞梅. 青海省黄土丘陵区主要林分土壤微量元素丰缺状况研究[J]. 干旱区资源与环境,2017,31(3):130-135.]
    [9] Xie Z C,Ma C H,Hu D J,et al. Studies on content and distribution of micronutrients in soils of Hubei Province[J]. Acta Pedologica Sinica,1990,27(4):411-419. [谢振翅,马朝红,胡定金,等. 湖北省土壤微量元素含量分布研究[J]. 土壤学报,1990,27(4):411-419.]
    [10] He J Y,Zheng W L,Deng L Z. Distribution and fertilizer efficiency of the trace elements in soils of Henan[J]. Acta Pedologica Sinica,1986,23(2):132-141. [贺家媛,郑文麒,邓留珍. 河南省土壤微量元素含量分布及在农业上的应用[J]. 土壤学报,1986,23(2):132-141.]
    [11] Chu H X,Mu W Y,Dang H Y,et al. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China [J]. Acta Agronomica Sinica,2022,48(11):2853-2865. [褚宏欣,牟文燕,党海燕,等. 我国主要麦区小麦籽粒微量元素含量及营养评价[J]. 作物学报,2022,48(11):2853-2865.]
    [12] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000. [鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社,2000.]
    [13] Wang C Q,Li B,Gong B,et al. Study on the bioavailability and impact factors of Fe,Mn,Cu and Zn in the soils of Xichang city [J]. Chinese Journal of Soil Science,2010,41(2):447-451. [王昌全,李冰,龚斌,等. 西昌市土壤Fe、Mn、Cu、Zn有效性评价及其影响因素分析[J]. 土壤通报,2010,41(2):447-451.]
    [14] Shen S M. Soil fertility in China [M]. Beijing:China Agriculture Press,1998. [沈善敏. 中国土壤肥力[M]. 北京:中国农业出版社,1998.]
    [15] Yu C Z,Peng L,Peng X L,et al. Evaluation of available-Mn(DTPA-Mn)in loessal soils and discussion of its critical level[J]. Acta Pedologica Sinica,1984,21(3):277-283. [余存祖,彭琳,彭祥林,等. 土壤有效锰(DTPA-Mn)的应用评价与临界值的探讨[J]. 土壤学报,1984,21(3):277-283.]
    [16] Biwe E R. Status and distribution of available micronutrients along a toposequence at Gubi Bauchi North Eastern Nigeria[J]. International Research Journal of Agricultural Science & Soil Science,2012,2(10):436-439.
    [17] Egbuchua C. Extractable micronutrients status and their relationship with some Inland valley soil properties in Delta State,Nigeria[J]. Journal of Agriculture & Food Sciences,2011,9(1):44-54.
    [18] de Santiago A,Quintero J M,Delgado A. Long-term effects of tillage on the availability of iron,copper,manganese,and zinc in a Spanish Vertisol[J]. Soil and Tillage Research,2008,98(2):200-207.
    [19] Katyal J C,Vlek P. Micronutrient problems in tropical Asia[J]. Fertilizer Research,1985,7(1/2/3):69-94.
    [20] Nourzadeh M,Hashemy S M,Rodriguez Martin J A,et al. Using fuzzy clustering algorithms to describe the distribution of trace elements in arable calcareous soils in northwest Iran[J]. Archives of Agronomy & Soil Science,2013,59(3):435-448.
    [21] Kashem M A,Singh B R. Metal availability in contaminated soils:I. Effects of floodingand organic matter on changes in Eh,pH and solubility of Cd,Ni and Zn [J]. Nutrient Cycling in Agroecosystems,2001,61(3):247-255.
    [22] Luo S,Zhang D M,Lu D B,et al. Evaluation of trace elements abundance and deficiency in cultivated soil and its influencing factors in Bijie City of Wumeng Mountain [J]. Geological Bulletin of China,2021,40(9):1570-1583. [骆珊,张德明,卢定彪,等. 乌蒙山区毕节市耕地土壤微量元素丰缺评价及其影响因素[J]. 地质通报,2021,40(9):1570-1583.]
    [23] Alloway B J. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry and Health,2009,31(5):537-548.
    [24] Wang S Z. Availability and chemical characteristics of trace elements in soils under long-term fertilization[D]. Beijing:Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,2016. [王书转. 长期施肥条件下土壤微量元素化学特性及有效性研究[D]. 北京:中国科学院研究生院(教育部水土保持与生态环境研究中心),2016.]
    [25] Katyal J C,Agarwala S C. Micronutrient research in India[J]. Fertilizer News,1982,27(2):66-86.
    [26] Tan J,Liu X Y,Li Q,et al. Distribution of available zinc in tobacco-planting soils in Wenshan and its influential factors[J]. Soils,2017,49(4):719-724. [谭军,刘晓颖,李强,等. 文山植烟土壤有效锌含量及其影响因素研究[J]. 土壤,2017,49(4):719-724.]
    [27] Guo J L,Wu S W,Jin H,et al. Spatial variability and controlling factors of microelements contents in farmland soils[J]. Journal of Soil and Water Conservation,2010,24(1):145-149,158. [郭军玲,吴士文,金辉,等. 农田土壤微量元素含量的空间变异特征和影响因素[J]. 水土保持学报,2010,24(1):145-149,158.]
    [28] Qiao Y N. Prediction of available Fe,Mn,Cu,Zn contents in farmland soil of Jiangjin district and its influencing factors [D]. Chongqing:Southwest University,2015. [乔依娜. 江津区农田土壤有效态铁、锰、铜、锌的含量预测及其影响因素研究[D]. 重庆:西南大学,2015.]
    [29] Liu H J,Chen H N,Wang J M,et al. Effects of long-term fertilization on iron fraction and availability in brown soil[J]. Journal of Plant Nutrition and Fertilizer,2017,23(1):36-43. [刘侯俊,陈红娜,王俊梅,等. 长期施肥对棕壤铁形态及其有效性的影响[J]. 植物营养与肥料学报,2017,23(1):36-43.]
    [30] Gao X,Flaten D N,Tenuta M,et al. Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization[J]. Plant and Soil,2011,338(1):423-434.
    [31] Cui H Y,Wang M D,Jie X L,et al. Effect of phosphorus,zinc and cadmium interaction on their availability in calcareous cinnamon soil[J]. Journal of Agro-Environment Science,2010,29(1):97-103. [崔海燕,王明娣,介晓磊,等. 石灰性褐土中磷锌镉相互作用对其有效性的影响[J]. 农业环境科学学报,2010,29(1):97-103.]
    [32] Liu F,Liu Z Z,Liu S L,et al. The mechanism of phosphorus and zinc interaction and the effects of phosphorus on zinc adsorption & desorption in Chao soil[J]. Ecology and Environmental Sciences,2011,20(11):1770-1776. [刘芳,刘忠珍,刘世亮,等. 潮土中磷锌交互作用机制探讨及磷对锌吸附-解吸的影响[J]. 生态环境学报,2011,20(11):1770-1776.]
    [33] Zhao R F,Zou C Q,Zhang F S. Effects of long-term P fertilization on P and Zn availability in winter wheat rhizoshpere and their nutrition[J]. Plant Nutrition and Fertilizer Science,2007,13(3):368-372. [赵荣芳,邹春琴,张福锁. 长期施用磷肥对冬小麦根际磷、锌有效性及其作物磷锌营养的影响[J]. 植物营养与肥料学报,2007,13(3):368-372.]
    [34] Lindsay W L. Zinc in soils and plant nutrition[J]. Advances in Agronomy,1972,24(2):147-186.
    [35] Jiang Y,Zhang Y G,Liang W J,et al. Correlations of exchangeable Ca,Mg,Fe,Mn,Cu and Zn in cultivated soils[J]. Ecology and Environment,2003,12(2):160-163. [姜勇,张玉革,梁文举,等. 耕地土壤中交换态钙镁铁锰铜锌相关关系研究[J]. 生态环境,2003,12(2):160-163.]
    [36] Zhang S X,Yi Y L,Liu X Y. Study on correlation between some metal element contents in soils of Caohekou area,Liaoning Province and their affecting factors[J]. Acta Pedologica Sinica,1999,36(2):253-260. [张淑香,依艳丽,刘孝义. 草河口地区土壤中重金属等元素含量的相互关系及其影响因素[J].土壤学报,1999,36(2):253-260.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

褚宏欣,党海燕,王涛,孙蕊卿,侯赛宾,黄倩楠,李小涵,王朝辉,黄婷苗.我国主要麦区土壤有效铁锰铜锌丰缺状况评价及影响因素[J].土壤学报,2024,61(1):129-139. DOI:10.11766/trxb202205070236 CHU Hongxin, DANG Haiyan, WANG Tao, SUN Ruiqing, HOU Saibin, HUANG Qiannan, LI Xiaohan, WANG Zhaohui, HUANG Tingmiao. Evaluations and Influencing Factors of Soil Available Fe, Mn, Cu and Zn Concentrations in Major Wheat Production Regions of China[J]. Acta Pedologica Sinica,2024,61(1):129-139.

复制
分享
文章指标
  • 点击次数:783
  • 下载次数: 1762
  • HTML阅读次数: 1047
  • 引用次数: 0
历史
  • 收稿日期:2022-05-07
  • 最后修改日期:2022-12-16
  • 录用日期:2023-02-20
  • 在线发布日期: 2023-02-27
  • 出版日期: 2024-01-15
文章二维码