腐殖酸和pH对典型轮胎磨损颗粒迁移行为的影响机制
作者:
基金项目:

江苏省自然科学基金资助项目(BK20210654)、南京信息工程大学科研启动经费资助项目(2021r049)和上海同济高廷耀环保科技发展基金项目(STGEF)共同资助


Influencing Mechanisms of Humic Acid and pH on the Migration Behavior of Typical Tire Wear Particles
Author:
Fund Project:

Supported by the Natural Science Foundation of Jiangsu Province, China(No. BK20210654),the Scientific Research Start-up Foundation of Nanjing University of Information Science and Technology, China (No. 2021r049) and the Gaotingyao Environmental Protection Science and Technology Development Fund Project of Shanghai Tongji University, China (No. STGEF)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    轮胎磨损颗粒(Tire wear particles,TWPs)作为微塑料(Microplastics,MPs)的重要种类之一,当下其生态风险已受到生态学家的高度重视。通常,颗粒型污染物的环境行为过程是其生态风险的重要影响因素。然而,TWPs在土壤等多孔介质中的迁移过程及影响机制至今尚未见报道。选择冷冻破碎制备的冷冻破碎轮胎磨损颗粒(C-TWPs)以及道路磨损产生的滚动摩擦轮胎磨损颗粒(R-TWPs)和滑动摩擦轮胎磨损颗粒(S-TWPs)为典型研究对象,以石英砂柱来模拟研究TWPs在土壤等环境多孔介质中的迁移行为,并探究天然有机物腐殖酸(HA)及不同pH(4、7和10)环境对以上三种类型TWPs迁移行为的影响。结果显示:HA(50 mg·L–1)能够显著增强三种类型TWPs的迁移性,并且在HA(50 mg·L–1)存在下,不同pH(4、7和10)对TWPs迁移行为影响不同,中碱性环境(pH=7/10)更有利于TWPs的迁移。主要原因在于,HA存在或(和)中碱性环境有利于(同时)增大TWPs和石英砂颗粒表面的Zeta电位值(绝对值),此时,一方面TWPs的分散性得到改善,有较小的粒径分布,另一方面增加了TWPs和石英砂颗粒间的静电排斥力,有助于TWPs的迁移。值得注意的是,HA存在和不同pH环境条件下,低温破碎制备的C-TWPs的迁移性较R-TWPs和S-TWPs强,主要由于C-TWPs制备时携带有较多的负电荷、较小的等电点和较强的疏水性,上述性质也可促使其吸附更多的HA,从而加强其电负性;而R-TWPs和S-TWPs由于粘附了道路矿物、金属盐或灰尘而减弱以上性质,表面具有较小的电负性。研究结果揭示了不同类型TWPs在自然界中地球化学迁移行为的差异性,并暗示了研究源头性质(排放方式)以确定同种材质微塑料环境行为及生态风险内在差异的必要性。

    Abstract:

    【Objective】 Tire wear particles (TWPs), as one of the important types of microplastics (MPs), have received a lot of attention from ecologists for their ecological risk in recent times. Usually, the environmental behavioral processes of particulate pollutants are important influencing factors of their ecological risk. However, the migration process and influencing mechanisms of TWPs in porous media such as soil have not been reported so far. 【Method】 In this paper, C-TWPs prepared by freezing crushing and R-TWPs (rolling friction) and S-TWPs (sliding friction) produced by road wear were selected as typical research objects, and quartz sand columns were used to simulate and study the migration behavior of TWPs in environmental porous media such as soil, and to investigate the effects of natural organic matter humic acid (HA) and different pH (4, 7 and 10) environments on the migration behavior of the above three types of TWPs.【Result】 The results showed that HA (50 mg·L-1) significantly enhanced the mobility of the three types of TWPs, and the migration behavior of TWPs was differently affected by different pH (4, 7 and 10) environmental conditions in the presence of HA (50 mg·L-1), with the medium-alkaline environment(pH=7/10) being more favorable for the migration of TWPs. This was mainly due to an increase in the negative zeta potentials of the surfaces of TWPs and quartz sand particles in the presence of HA and/or the medium alkaline environment (simultaneously). Also, the dispersion of TWPs was improved for smaller particle size distribution while the electrostatic repulsion between TWPs and quartz sand particles was increased, which contributed to the migration of TWPs. It is worth noting that the migration of C-TWPs prepared by low-temperature crushing was stronger than that of R-TWPs and S-TWPs in the presence of HA and under different environmental pH conditions. This was mainly attributed to the fact that C-TWPs carried a larger negative charge, smaller isoelectric point and stronger hydrophobicity, and these properties also contributed to the adsorption of more HA, thus enhancing their electronegativity. Nevertheless, R-TWPs and S-TWPs had less electronegativity on the surface due to the adhesion of road minerals, metal salts or dust that reduced the magnitude of the mentioned properties.【Conclusion】 These results reveal the variability of the geochemical transport behavior of different types of TWPs in nature and suggest the necessity of studying the source properties (discharge mode) to determine the inherent differences in environmental behaviors and ecological risks of microplastics of the same material.

    参考文献
    [1] Liu Q, Xu X D, Huang W, et al. Research advances on the ecological effects of microplastic pollution in the marine environment[J]. Acta Ecologica Sinica, 2017, 37(22):7397-7409.[刘强, 徐旭丹, 黄伟, 等. 海洋微塑料污染的生态效应研究进展[J]. 生态学报, 2017, 37(22):7397-7409.]
    [2] Chen L, Gao S X, Xu Y L. Progress on release and migration of plastic additives to ecological environment[J]. Acta Ecologica Sinica, 2021, 41(8):3315-3324. [陈蕾, 高山雪, 徐一卢. 塑料添加剂向生态环境中的释放与迁移研究进展[J]. 生态学报, 2021, 41(8):3315-3324.]
    [3] Sommer F, Dietze V, Baum A, et al. Tire abrasion as a major source of microplastics in the environment[J]. Aerosol and Air Quality Research, 2018, 18:2014-2028.
    [4] Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust:Roads as sources and sinks[J]. Environmental Science & Technology, 1993, 27(9):1892-1904.
    [5] Baensch-Baltruschat B, Kocher B, Stock F, et al. Tyre and road wear particles(TRWP)-A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment[J]. Science of the Total Environment, 2020, 733:137823.
    [6] Kole P J, Löhr A J, van Belleghem F G A J, et al. Wear and tear of tyres:A stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10):1265.
    [7] Panko J M, Chu J, Kreider M L, et al. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States[J]. Atmospheric Environment, 2013, 72:192-199.
    [8] Lin D H, Ji J, Tian X L, et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin, 2009, 54(23):3590-3604. [林道辉, 冀静, 田小利, 等. 纳米材料的环境行为与生物毒性[J]. 科学通报, 2009, 54(23):3590-3604.]
    [9] Li X H, Xu H X, Sun Y Y, et al. Review on the environmental behaviors of microplastics in porous media[J]. China Environmental Science, 2021, 41(6):2798-2811. [李宵慧, 徐红霞, 孙媛媛, 等. 多孔介质中微塑料的环境行为研究进展[J]. 中国环境科学, 2021, 41(6):2798-2811.]
    [10] Wang X T. Study on the effect of different environmental factors on the adsorption and migration behavior of TiO2 nanoparticles in saturated porous media[D]. Beijing:Peking University, 2013. [王雪婷. 不同环境因子对纳米TiO2在饱和多孔介质中吸附迁移行为的影响研究[D]. 北京:北京大学, 2013.]
    [11] Zhao P, Cui L M, Zhao W G, et al. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media:The impact of ionic strength and cationic types[J]. Science of the Total Environment, 2021, 753:142064.
    [12] Zhang Z P, Zhang X F, Liu Z G. Review of tires wear particles emission research status[J]. Auto Time, 2020(12):145-148. [张子鹏, 张新峰, 刘振国. 轮胎磨损颗粒物排放特性研究现状综述[J]. 时代汽车, 2020(12):145-148.]
    [13] Wagner S, Hüeffer T, Klöeckner P, et al. Tire wear particles in the aquatic environment-A review on generation, analysis, occurrence, fate and effects[J]. Water Research, 2018, 139:83-100.
    [14] Liu Z, Sun Y J, Wang J Q, et al. In vitro assessment reveals the effects of environmentally persistent free radicals on the toxicity of photoaged tire wear particles[J]. Environmental Science & Technology, 2022, 56(3):1664-1674.
    [15] Sun Y Y, Gao B, Bradford S A, et al. Transport, retention, and size perturbation of graphene oxide in saturated porous media:Effects of input concentration and grain size[J]. Water Research, 2015, 68:24-33.
    [16] Franchi A, O'Melia C R. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media[J]. Environmental Science & Technology, 2003, 37(6):1122-1129.
    [17] Yang X Y, Lin S, Wiesner M R. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media[J]. Journal of Hazardous Materials, 2014, 264:161-168.
    [18] Wall N A, Choppin G R. Humic acids coagulation:Influence of divalent cations[J]. Applied Geochemistry, 2003, 18(10):1573-1582.
    [19] Li P F, Hou D Y, Wang L W, et al.(Micro) plastics pollution in agricultural soils:Sources, transportation, ecological effects and preventive strategies [J]. Acta Pedologica Sinica, 2021, 58(2):314-330. [李鹏飞, 侯德义, 王刘炜, 等.农田中的(微)塑料污染:来源、迁移、环境生态效应及防治措施[J]. 土壤学报, 2021, 58(2):314-330.]
    [20] Li K, Wang P F, Qian J, et al. Effects of sediment components and TiO2 nanoparticles on perfluorooctane sulfonate adsorption properties[J]. Journal of Soils and Sediments, 2019, 19(4):2034-2047.
    [21] Qian J, Li K, Wang P F, et al. Unraveling adsorption behavior and mechanism of perfluorooctane sulfonate(PFOS) on aging aquatic sediments contaminated with engineered nano-Tio2[J]. Environmental Science and Pollution Research, 2018, 25(18):17878-17889.
    [22] Hu J D, Zevi Y, Kou X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions[J]. Science of the Total Environment, 2010, 408(16):3477-3489.
    [23] Yin Y G, Shen M H, Tan Z Q, et al. Particle coating-dependent interaction of molecular weight fractionated natural organic matter:Impacts on the aggregation of silver nanoparticles[J]. Environmental Science & Technology, 2015, 49(11):6581-6589.
    [24] Chen H F. Selective and quantitative adsorption mechanisms of soil humic substance on multi-component minerals[D]. Wuhan:Huazhong Agricultural University, 2018. [陈红凤. 土壤腐殖酸在多组分矿物上的选择吸附特性及作用机制量化[D]. 武汉:华中农业大学, 2018.]
    [25] Han B, Liu W, Zhao X, et al. Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media:Influences of electrolyte, clay and humic acid[J]. Science of the Total Environment, 2017, 599/600:188-197.
    [26] Yang M H, Li Z X, Liu Y Y, et al. Impacts and mechanisms of natural organic matter and pH on the transport of nanobiochar[J]. Geoscience, 2018, 32(1):113-120. [杨美红, 李志雄, 刘雨嫣, 等. 天然有机质和不同ph环境对纳米黑炭的迁移行为影响及作用机制[J]. 现代地质, 2018, 32(1):113-120.]
    [27] Hou J, Zhang M Z, Wang P F, et al. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand:The impact of natural organic matters and electrolyte[J]. Environmental Pollution, 2017, 229:49-59.
    [28] Lin S, Wiesner M R. Theoretical investigation on the interaction between a soft particle and a rigid surface[J]. Chemical Engineering Journal, 2012, 191:297-305.
    [29] Wang D J, Zhang W, Zhou D M. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand[J]. Environmental Science & Technology, 2013, 47(10):5154-5161.
    [30] Chen M, Wang D J, Yang F, et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution, 2017, 230:540-549.
    [31] Calero J, Ontiveros-Ortega A, Aranda V, et al. Humic acid adsorption and its role in colloidal-scale aggregation determined with the zeta potential, surface free energy and the extended-dlvo theory[J]. European Journal of Soil Science, 2017, 68(4):491-503.
    [32] Yang J, Bitter J L, Smith B A, et al. Transport of oxidized multi-walled carbon nanotubes through silica based porous media:Influences of aquatic chemistry, surface chemistry, and natural organic matter[J]. Environmental Science & Technology, 2013, 47(24):14034-14043.
    [33] Jiang X J, Wang X E, Tong M P, et al. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm[J]. Environmental Pollution, 2013, 174(5):38-49.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李昆,孔德跃,陈星月,彭永红,修小嘉,苏涵,潘旻宇.腐殖酸和pH对典型轮胎磨损颗粒迁移行为的影响机制[J].土壤学报,2024,61(2):456-468. DOI:10.11766/trxb202206200329 LI Kun, KONG Deyue, CHEN Xingyue, PENG Yonghong, XIU Xiaojia, SU Han, PAN Minyu. Influencing Mechanisms of Humic Acid and pH on the Migration Behavior of Typical Tire Wear Particles[J]. Acta Pedologica Sinica,2024,61(2):456-468.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-20
  • 最后修改日期:2022-10-08
  • 录用日期:2022-11-28
  • 在线发布日期: 2022-12-06
  • 出版日期: 2024-03-15
文章二维码