土壤真菌群落和潜在功能对施加外源Bt毒素的响应
作者:
基金项目:

国家自然科学基金面上项目(32071657)、上海市自然科学基金面上项目(19ZR1434400)、上海市科技创新行动计划技术标准项目(20DZ2202900)和上海市农业科学院攀高计划(PG21211)资助


The Response of Soil Fungal Communities and Potential Functions to the Application of Exogenous Bt Toxins
Author:
  • LI Yujie

    LI Yujie

    College of Food Sciences and Technology of Shanghai Ocean University, Shanghai 201306, China;Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GE Lei

    GE Lei

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Cong

    HU Cong

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Luyao

    WANG Luyao

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Guanqing

    GUO Guanqing

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Guogan

    WU Guogan

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Cui

    WANG Cui

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Lili

    SONG Lili

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Yu

    SUN Yu

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jinbin

    WANG Jinbin

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZENG Haijuan

    ZENG Haijuan

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Qinqing

    XU Qinqing

    Shandong Agricultural Technology Extension Center, Jinan 250003, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QUAN Zhexue

    QUAN Zhexue

    School of Life Sciences of Fudan University, Shanghai 200433, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Peng

    LI Peng

    Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Key Laboratory of Biosafety Assessment(Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

the National Natural Science Foundation of China (32071657), the Natural Science Foundation of Shanghai (19ZR1434400), the “Science and Technology Innovation Action Plan”-Technical Standards of Shanhgai (20DZ2202900) and the Talent Project of SAAS (PG21211).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    BtBacillus thuringiensis)基因植物和Bt菌生物农药释放的Bt毒素是一类具有生物毒性的潜在环境外源污染物,Bt毒素环境行为和生态效应是转基因植物和植物用转基因微生物安全风险评价的重要内容,但是外源Bt毒素对土壤真菌群落和潜在功能的影响还不清楚。以施加不同浓度Bt毒素处理土壤和未施加Bt毒素对照土壤为研究对象,分析Bt毒素在土壤中的持留动态;同时采用真菌18S rRNA基因高通量测序技术,分析施加Bt毒素对土壤真菌群落和功能多样性的影响。结果表明,Bt毒素施加量和培养时间均可以显著影响土壤真菌群落组成,且随着Bt毒素施加量增加和土壤培养时间延长,土壤真菌群落差异性逐渐变大。施加Bt毒素提高了土壤真菌群落香农指数和关联网络的负相关性比例及模块数,因而没有对土壤真菌群落的多样性和稳定性产生负面影响。上述结果表明,评估Bt毒素的环境行为及微生态效应要关注Bt毒素施加量及其长期影响。随着Bt毒素施加量增加,PhymatotrichopsisHomalogastraGeosmithiaApiotrichum等真菌以及参与蛋白质降解、碳素代谢和磷素代谢的功能基因编码酶相对丰度显著升高,推测上述真菌物种和潜在功能参与了Bt毒素在土壤中的降解和转化过程。研究结果为转Bt基因植物、Bt重组菌生物农药以及Bt毒素的生态安全风险评价提供了科学参考和理论依据。

    Abstract:

    ObjectiveBt toxins released from Bt plants and Bt biopesticides are potential exogenous pollutants in the environment with biocidal activity. The environmental behavior and ecological effects of Bt toxins are the focus of safety risk assessment of transgenic plants and transgenic microorganisms. Fungus is an important component of soil microbes and plays a key role in maintaining soil ecosystem stability, but the dynamic response of soil fungal communities and potential functions to exogenous Bt toxins remains unclear.MethodIn this study, the retention dynamics of Bt toxins in soils incorporated with different concentrations of Bt toxins were analyzed, and high-throughput sequencing technology of fungal 18S rRNA gene was used to analyze the effects of Bt toxins application on the soil fungal community and functional diversity.ResultThe results showed that the concentration of water-dissolved Bt toxins in soil decreased significantly with the prolongation of soil incubation time, and the amounts of water-dissolved Bt toxins in soil with initial Bt toxins concentrations of 50, 100 and 500 ng·g-1 decreased to those of control soil on the 100th day. Both the application of Bt toxins and incubation time could significantly affect the composition of the soil fungal community, and with an increase of initial Bt toxins concentration and prolongation of soil incubation time, the difference in soil fungal community gradually widened. The application of Bt toxins increased the Shannon index of the soil fungal community, the negative correlation and modules of the association network, and thus it did not adversely affect the diversity and stability of the soil fungal community.ConclusionThe results indicate that the initial concentration of Bt toxins and its long-term effects should be of concern when assessing the environmental behavior and micro-ecological effects of Bt toxins. With the increase of Bt toxins concentration, the relative abundances of Phymatotrichopsis, Homalogastra, Geosmithia and Apiotrichum increased significantly, as well as functional genes encoding enzymes involved in protein degradation, carbon metabolism and phosphorus metabolism. It is speculated that the above-mentioned fungal taxa and potential functions were involved in the degradation and transformation process of Bt toxins in the soil. This study provides a scientific reference and theoretical basis for the ecological safety risk assessment of Bt plants, Bt recombinant biopesticides and Bt toxins.

    参考文献
    [1] Hannay C L. Crystalline inclusions in aerobic sporeforming bacteria[J]. Nature, 1953, 172(4387): 1004.
    [2] Shan Y M. Discovery and activity analysis of novel insecticidal genes from Bacillus thuringiensis[D]. Harbin: Northeast Agricultural University, 2019. 单月明. 苏云金芽胞杆菌新型杀虫基因的发掘与活性分析[D]. 哈尔滨: 东北农业大学, 2019.
    [3] Wu J Y, Wei L, He J L, et al. Characterization of a novel Bacillus thuringiensis toxin active against Aedes aegypti larvae[J]. Acta Tropica, 2021, 223: 106088.
    [4] James C. Brief 55: Global Status of Commercialized Biotech/GM Crops: 2019[R]. ISAAA: Ithaca, NY. 2019.
    [5] Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae[J]. Nature, 1999, 399(6733): 214.
    [6] Liu J, Liang Y S, Hu T, et al. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112805.
    [7] Wei Q, Zhu X H, He J C, et al. Toxicity comparison and lethal phenotypes of five microbial insecticides against three major rice pests in laboratory research[J]. Plant Protection, 2022, 48(4): 165-174. 魏琪, 朱旭晖, 何佳春, 等. 5种微生物杀虫剂对3种水稻主要害虫的室内毒力比较及致死表型观察[J]. 植物保护, 2022, 48(4): 165—174.
    [8] Ding X Z, Luo Z H, Xia L Q, et al. Cloning and expression of the cry1Ac-tchiB fusion gene from Bacillus Thuringinesis and Tobacco and its insecticidal synergistic effect[J]. Acta Microbiologica Sinica, 2007, 47(6): 1002—1008. 丁学知, 罗朝晖, 夏立秋, 等. 苏云金芽胞杆菌cry1Ac与烟草几丁质酶tchiB双价基因克隆表达及其杀虫增效作用研究[J]. 微生物学报, 2007, 47(6): 1002—1008.
    [9] Wang G J, Zhang J, Song F P, et al. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests[J]. Applied Microbiology and Biotechnology, 2006, 72(5): 924—930.
    [10] Liu H M, Xu G J. Microbial pesticide Bacillus thuringiensis G033A[J]. Pesticide Science and Administration, 2018, 39(4): 59—60. 刘华梅, 许国建. 微生物农药苏云金杆菌G033A[J]. 农药科学与管理, 2018, 39(4): 59—60.
    [11] Wang H Y. Study on environmental behavior and bioeffects of Bt transgenic rice and expressed products of its exogenous gene[D]. Hangzhou: Zhejiang University, 2007. 汪海燕. Bt水稻及其外源基因表达蛋白的环境行为与生物学效应[D]. 杭州: 浙江大学, 2007.
    [12] Li Y J, Wang C, Ge L, et al. Environmental behaviors of Bacillus thuringiensis(Bt) insecticidal proteins and their effects on microbial ecology[J]. Plants: Basel, Switzerland, 2022, 11(9): 1212.
    [13] Belousova M E, Malovichko Y V, Shikov A E, et al. Dissecting the environmental consequences of Bacillus thuringiensis application for natural ecosystems[J]. Toxins(Basel), 2021, 13(5): 355.
    [14] Agricultural Genetically Modified Organisms Safety Management Office of the Ministry of Agriculture and Rural Affairs. Notice of the Agricultural Genetically Modified Organisms Safety Management Office of the Ministry of Agriculture and Rural Affairs on publicly soliciting opinions on the "Guidelines for the Safety Evaluation of Genetically Modified Plants(Revised in 2022)"[Z]. 2022. 农业农村部农业转基因生物安全管理办公室. 农业农村部农业转基因生物安全管理办公室关于公开征求《转基因植物安全评价指南(2022年修订)》意见的通知[Z]. 2022.
    [15] Li P, Xue Y, Shi J L, et al. The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties[J]. Microbiome, 2018, 6(1): 184.
    [16] Li P, Wu G G, Li Y J, et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability[J]. Geoderma, 2022, 413: 115745.
    [17] de Vries F T, Griffiths R I, Bailey M, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9: 3033.
    [18] Qiu L P, Zhang Q, Zhu H S, et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 2021, 15(8): 2474—2489.
    [19] Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193—199.
    [20] He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 2013, 21(4): 412—421. 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 2013, 21(4): 412—421.
    [21] Banerjee S, Walder F, Büchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019, 13(7): 1722—1736.
    [22] Li P, Li Y C, Shi J L, et al. Rice straw return of different decomposition days altered soil fungal community structure[J]. Acta Ecologica Sinica, 2017, 37(13): 4309—4317. 李鹏, 李永春, 史加亮, 等. 水稻秸秆还田时间对土壤真菌群落结构的影响[J]. 生态学报, 2017, 37(13): 4309—4317.
    [23] Sheng Y Y, Cong J, Lu H, et al. Soil fungal diversity of the timberline ecotone in Shennongjia National Park[J]. Acta Ecologica Sinica, 2018, 38(15): 5322—5330. 盛玉钰, 丛静, 卢慧, 等. 神农架国家公园林线过渡带土壤真菌多样性[J]. 生态学报, 2018, 38(15): 5322—5330.
    [24] Liang J G, Jiao Y, Liu P C, et al. Arbuscular mycorrhizal fungi as a potential indicator to assess effects of genetically modified crops on soil microorganisms[J]. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1267—1272. 梁晋刚, 焦悦, 刘鹏程, 等. 丛枝菌根真菌作为指示性物种评估转基因作物对土壤微生物影响的研究概述[J]. 浙江农业学报, 2018, 30(7): 1267—1272.
    [25] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59(1): 143—169.
    [26] Ghazanfar S, Azim A, Ghazanfar M, et al. Metagenomics and its application in soil microbial community studies: Biotechnological[J]. Journal of Animal and Plant Sciences, 2010, 6(2): 611—622.
    [27] Li X R. Using ribosomal RNA pyrosequencing to explore the microbial community structure[D]. Shanghai: Fudan University, 2011. 李晓然. 基于核糖体RNA高通量测序分析微生物群落结构[D]. 上海: 复旦大学, 2011.
    [28] Valldor P, Miethling-Graff R, Martens R, et al. Fate of the insecticidal Cry1Ab protein of GM crops in two agricultural soils as revealed by 14C-tracer studies[J]. Applied Microbiology and Biotechnology, 2015, 99(17): 7333—7341.
    [29] Rui Y K, Yi G X, Zhao J, et al. Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria[J]. World Journal of Microbiology and Biotechnology, 2005, 21(6): 1279—1284.
    [30] Xiao M Q, Dong S S, Li Z L, et al. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season[J]. Ecotoxicology and Environmental Safety, 2015, 122: 275—289.
    [31] Zhang Y J, Cui N B, Zhang L Z, et al. Fungal diversity during raw vinegar brewing process as revealed by high-throughput sequencing[J]. Acta Microbiologica Sinica, 2020, 60(7): 1358—1369. 张永杰, 崔宁波, 张丽珍, 等. 基于DNA高通量测序分析生料酿醋过程中的真菌多样性[J]. 微生物学报, 2020, 60(7): 1358—1369.
    [32] Fang D X, Zhao G, Xu X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684—693.
    [33] Douglas G M, Maffei V J, Zaneveld J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685—688.
    [34] Zhang J H, Wang J Y, Meng Z X, et al. Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow[J]. Acta Ecologica Sinica, 2022, 42(7): 2542—2558. 张君红, 王健宇, 孟泽昕, 等. 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性[J]. 生态学报, 2022, 42(7): 2542—2558.
    [35] Li P, Ye S F, Liu H, et al. Cultivation of drought-tolerant and insect-resistant rice affects soil bacterial, but not fungal, abundances and community structures[J]. Frontiers in Microbiology, 2018, 9: 1390.
    [36] Bai Y Y, Jiang M X, Cheng J A. Temporal expression patterns of Cry1Ab insecticidal protein in Bt rice plants and its degradation in paddy soils[J]. Acta Ecologica Sinica, 2005, 25(7): 1583—1590. 白耀宇, 蒋明星, 程家安. Bt水稻Cry1Ab杀虫蛋白表达的时间动态及其在水稻土中的降解[J]. 生态学报, 2005, 25(7): 1583—1590.
    [37] Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn[J]. Nature, 1999, 402(6761): 480.
    [38] Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids[J]. Journal of Environmental Quality, 2000, 29(3): 691—705.
    [39] Stotzky G. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants[J]. Plant and Soil, 2005, 266(1): 77—89.
    [40] Fu Q L. The adsorption and rematining of Bacillus thuringinesis toxin in minerals and soil colloids[D]. Wuhan: Huazhong Agricultural University, 2009. 付庆灵. Bt毒素在矿物和土壤胶体上的吸附和残留研究[D]. 武汉: 华中农业大学, 2009.
    [41] Li Z L, Bu N S, Chen X P, et al. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities[J]. Ecotoxicology and Environmental Safety, 2018, 152: 33—41.
    [42] Uppalapati S R, Young C A, Marek S M, et al. Phymatotrichum(cotton) root rot caused by Phymatotrichopsis omnivora: Retrospects and prospects[J]. Molecular Plant Pathology, 2010, 11(3): 325—334.
    [43] Pepori A L, Bettini P P, Comparini C, et al. Geosmithia-Ophiostoma: A new fungus-fungus association[J]. Microbial Ecology, 2018, 75: 632–646.
    [44] Dohrmann A B, Küting M, Jünemann S, et al. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties[J]. The ISME Journal, 2013, 7(1): 37—49.
    [45] Nelson M B, Martiny A C, Martiny J B H. Global biogeography of microbial nitrogen-cycling traits in soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(29): 8033—8040.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李玉洁,葛蕾,胡聪,王璐瑶,郭官清,武国干,王翠,宋丽莉,孙宇,王金斌,曾海娟,徐勤青,全哲学,李鹏.土壤真菌群落和潜在功能对施加外源Bt毒素的响应[J].土壤学报,2024,61(3):848-861. DOI:10.11766/trxb202209070496 LI Yujie, GE Lei, HU Cong, WANG Luyao, GUO Guanqing, WU Guogan, WANG Cui, SONG Lili, SUN Yu, WANG Jinbin, ZENG Haijuan, XU Qinqing, QUAN Zhexue, LI Peng. The Response of Soil Fungal Communities and Potential Functions to the Application of Exogenous Bt Toxins[J]. Acta Pedologica Sinica,2024,61(3):848-861.

复制
分享
文章指标
  • 点击次数:292
  • 下载次数: 1334
  • HTML阅读次数: 550
  • 引用次数: 0
历史
  • 收稿日期:2022-09-07
  • 最后修改日期:2023-01-02
  • 录用日期:2023-03-28
  • 在线发布日期: 2023-04-06
  • 出版日期: 2024-05-15
文章二维码