长期耕作对典型黑土水力性质的影响
作者:
作者单位:

华中农业大学资源与环境学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2021YFD1500703)资助


Effects of Long-term Tillage on Hydraulic Properties of Typical Black Soils
Author:
Affiliation:

College of Resources and Environment, Huazhong Agricultural University

Fund Project:

National Key Research and Development Program of China (No.2021YFD1500703)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为揭示长期耕作对黑土耕地水文退化的作用,以典型黑土区不同纬度带的未经机械耕作的林地与长期耕作的耕地土壤进行对比,研究沟垄耕作对土壤垂直和水平方向物理性质和水力性质的影响。结果表明:长期耕作使得总体物理与土壤水力性质严重退化,与林地土壤相比,耕地土壤质地未发生变化,有机质含量显著降低,容重从1.03(0.84~1.17)g·cm-3显著提高至1.31(1.20~1.46)g·cm-3,穿透阻力显著增加,持水供水与导水性显著降低,有效含水量从0.19(0.14~0.23)cm3·cm-3降至0.15(0.10~0.21)cm3·cm-3。物理质量指数S值从0.061(优)降至0.025(差)。长期沟垄耕作使得犁底层的饱和导水率(6.61 cm·d-1)仅为耕作层的1/10.。耕作导致耕作层垂直方向导水率(64.67 cm·d-1)低于水平方向(82.84 cm·d-1)。犁底层的穿透阻力(897.04 kPa)为耕作层的1.89倍,造成了耕作层与犁底层水力性质分层。长期耕作导致的耕地土壤水力性质分层和方向分异是促进耕地坡面径流“沟渠效应”而加速侵蚀退化的重要原因。

    Abstract:

    【Objective】 Undisturbed woodland and cultivated land soils from vertical and horizontal directions were collected across different latitudes in typical black soil regions in Northeast China for this research. The objective was to investigate the effects of long-term tillage in cultivated land on the black soil hydrological degradation. 【Method】 Nine typical cultivated land units were selected across three latitudes, including Jiusan Farm Management Area in Nenjiang (48°46′N), Hailun (47°30′N), and Bayan County in Harbin (46°23′N). Intact soil cores were collected from 0-15 and 15-30 cm depths in vertical and horizontal directions to determine soil penetration resistance (SPR), and hydraulic properties (water retention and saturated hydraulic conductivity (Ks). 【Result】 Results showed that soil SPR significantly increased in cultivated land compared to woodland, and the SPR in tillage pan layer (15-30 cm) (897.04 kPa) was 1.89 times higher than that in woodland. Soil hydraulic properties also significantly decreased in cultivated land, whose soil available water decreased to 0.15 (0.10-0.21) cm3·cm-3 compared to 0.19 (0.14-0.23) cm3·cm-3 in woodland. Using soil physical quality index S to assess the over black soil quality showed that S value decreased from excellent 0.061 (0.041-0.094) in woodland to poor 0.025 (0.009-0.040) in cultivated land. The degradation of cultivated land quality was attributed to the significant reduction in soil organic matter content and significant increase in soil bulk density (1.31 g·cm-3 in cultivated land vs. 1.03 g·cm-3 in woodland). Long-term ridge tillage resulted in a 10 times reduction in Ks in tillage pan layer (6.61 cm·d-1), and this can be attributed to the disruption of balance between tillage and tillage pan layer and enlargement of magnitude difference for Ks and bulk density between two layers. Tillage resulted in a lower Ks in the vertical direction (64.67 cm·d-1) than in the horizontal direction (82.84 cm·d-1) in the tillage layer. The Ks decreased in a larger degree in the vertical direction and less degree in the horizontal direction. Thus, this heterogeneity of Ks in directions interfered the original water movement direction in tillage layer. The low hydraulic conductivity of the plough pan tends to accumulate precipitation and produce lateral interflow. 【Conclusion】 Generally, long-term tillage has severely degraded the physical and hydraulic properties of the soil. The huge difference of soil compactness and Ks between the tillage layer and plough pan produced an artificially stratified soil in cultivated land. The limitation of water infiltration is a dominant reason for the "furrow effect" in cultivated land.

    参考文献
    相似文献
    引证文献
引用本文

黄怡婷,陈俊熹,高钰淏,李馨月,邹自强,陈家宙.长期耕作对典型黑土水力性质的影响[J].土壤学报,2024,61(4). DOI:10.11766/trxb202212010665 HUANG Yiting, CHEN Junxi, GAO Yuhao, LI Xinyue, ZOU Ziqiang, CHEN Jiazhou. Effects of Long-term Tillage on Hydraulic Properties of Typical Black Soils[J]. Acta Pedologica Sinica,2024,61(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-01
  • 最后修改日期:2023-09-24
  • 录用日期:2023-10-20
  • 在线发布日期: 2023-10-23
  • 出版日期: