提高水稻耐盐能力的根际核心菌株筛选及应用
作者:
中图分类号:

S154.3

基金项目:

国家自然科学基金项目(42107328)、中央高校基本业务费(KYQN2022014)和江苏省沿海开发集团有限公司 2022年科技揭榜挂帅研发项目(No. 2022YHTDJB01)资助


Isolation and Application of Rhizosphere Core Strains to Improve Salt Tolerance of Rice
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 42107328), the Fundamental Research Funds for the Central Universities of China (No. KYQN2022014), and the

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    根际微生物能通过多种途径增强作物对盐胁迫的适应性。为获得能显著提高水稻耐盐性的根际促生菌并探究其应用效果,选择耐盐品种湖南籼和盐敏感品种南粳46两个水稻品种,分别比较了耐盐水稻和盐敏感水稻在自然盐土和灭菌盐土中的生理指标,然后基于16S rRNA基因扩增子测序,通过根系细菌群落差异分析和共现网络分析,鉴定了在耐盐水稻根际富集且与耐盐性相关的关键类群。随后,采用根际微生物宏培养方法从耐盐水稻根际筛选出关键细菌类群的可培养菌株。最后通过盆栽试验评估了菌株增强盐敏感水稻耐盐能力的作用效果。结果表明,自然盐土中耐盐水稻株高和根长均显著高于灭菌土壤中的植株,而脯氨酸含量则显著低于灭菌土壤中的植株,表明耐盐水稻品种根际的微生物群落在增强水稻耐盐能力中具有重要作用。扩增子测序分析发现耐盐水稻品种和盐敏感水稻品种根际微生物群落差异显著,差异分析明确黄杆菌科(Flavobacteriaceae)和假单胞菌科(Pseudomonadaceae)为耐盐水稻根际富集的关键细菌类群。通过设置盐胁迫下盐敏感水稻发芽试验和苗期水培试验,筛选出普氏假单胞菌P34和大安金黄杆菌C18两株功能菌。最后通过盆栽试验证明C18和P34作为直接接种剂或种子包衣剂均能在盐胁迫下显著促进盐敏感水稻生长。综上,C18和P34具有良好的增强水稻耐盐能力的潜力,可作为开发盐碱地专用的种子包衣及微生物肥料的候选菌剂。

    Abstract:

    【Objective】Rhizosphere beneficial microorganisms can enhance plant salt stress tolerance through multiple pathways, including re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth in saline soil. This study aimed to obtain plant growth-promoting rhizobacteria that can improve salt tolerance of rice and to explore its application effects.【Method】Two rice cultivars were used in this study, of which one is salt-tolerant cultivar Hunanxian and the other is salt-sensitive cultivar Nanjing 46. The physiological characteristics of rice seedlings were compared after planting in sterile and non-sterile saline soils. Then, the key rhizobacterial groups associated with salt tolerance, which were enriched in the rhizosphere of salt-tolerant rice cultivars, were identified by compositional differences and co-occurrence network analyses based on the 16S rRNA gene amplicon sequencing. Subsequently, the culturable strains of the key rhizobacterial groups were isolated through the high-throughput cultivation and identification method of rhizobacteria. Finally, pot experiments were conducted to evaluate the beneficial effects of the strains on enhancing the salt tolerance of salt-sensitive rice cultivar.【Result】The height of shoot and root length of salt-tolerant rice were significantly higher while the content of proline was significantly lower when cultivated in non-sterile soil than in sterile soil under salt stress. This indicates that the rhizosphere microbial community of salt-tolerant rice cultivars may play a crucial role in enhancing the salt tolerance of the host plant. Amplicon sequencing results demonstrated that the composition of the rhizosphere microbial communities of salt-tolerant and salt-sensitive rice cultivars was significantly different. The bacterial families of Flavobacteriaceae and Pseudomonadaceae were the key rhizobacterial groups that were both enriched in the rhizosphere of the salt-tolerant rice. Several bacterial strains affiliated with Flavobacteriaceae and Pseudomonadaceae were isolated, in which two strains of Pseudomonas punonensis P34 from Pseudomonadaceae and Chryseobacterium taeanense C18 from Flavobacteriaceae were screened to be the most efficient strains in improving the salt tolerance of rice by germination and hydroponics tests using salt-sensitive rice under salt stress. Finally, the efficient strains of C18 and P34 were applied as direct inoculants and seed-coating agents in pot experiments, and the results demonstrated that they were able to promote the growth of salt-sensitive rice under salt stress. 【Conclusion】Two rhizobacterial strains of C18 and P34 showed great capacity to enhance the salt tolerance of rice and they could be developed as bacteriological agents for seed coating or microbial fertilizer for application in saline lands.

    参考文献
    [1] Xie X F,Pu L J,Shen H Y,et al. Dynamics and prediction of soil salinization parameters under the amelioration of heavy coastal saline-alkali land[J]. Acta Pedologica Sinica,2022,59(6):1504-1516. [解雪峰,濮励杰,沈洪运,等. 滨海重度盐碱地改良土壤盐渍化动态特征及预测[J]. 土壤学报,2022,59(6):1504-1516.]
    [2] Yang J S,Yao R J,Wang X P,et al. Research on salt-affected soils in China:history,status quo and prospect[J]. Acta Pedologica Sinica,2022,59(1):10-27. [杨劲松,姚荣江,王相平,等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报,2022,59(1):10-27.]
    [3] García-Caparrós P,Llanderal A,Hegarat E,et al. Effects of exogenous application of osmotic adjustment substances on growth,pigment concentration,and physiological parameters of Dracaena sanderiana sander under different levels of salinity[J]. Agronomy,2020,10(1):125.
    [4] Trivedi P,Batista B D,Bazany K E,et al. Plant-microbiome interactions under a changing world:responses,consequences and perspectives[J]. New Phytologist,2022,234(6):1951-1959.
    [5] Liu Y P,Xun W B,Chen L,et al. Rhizosphere microbes enhance plant salt tolerance:Toward crop production in saline soil[J]. Computational and Structural Biotechnology Journal,2022,20:6543-6551.
    [6] Liu J W,Li X Z,Yao M J. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica,2021,61(2):231-248. [刘京伟,李香真,姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报,2021,61(2):231-248.]
    [7] Müller D B,Vogel C,Bai Y,et al. The plant microbiota:Systems-level insights and perspectives[J]. Annual Review of Genetics,2016,50:211-234.
    [8] Trivedi P,Leach J E,Tringe S G,et al. Plant-microbiome interactions:From community assembly to plant health[J]. Nature Reviews Microbiology,2020,18(11):607-621.
    [9] Si H L,Ji L D,Li L,et al. Effects of long-term application of bioorganic fertilizer on soil nutrients and biological characteristics of saline alkali land in Ningxia[J]. Soils,2022,54(6):1124-1131. [司海丽,纪立东,李磊,等. 生物有机肥对宁夏盐碱地土壤养分和生物学特性的影响[J]. 土壤,2022,54(6):1124-1131.]
    [10] Ren Y,Xun W B,Yan H,et al. Functional compensation dominates the assembly of plant rhizospheric bacterial community[J]. Soil Biology & Biochemistry,2020,150:107968.
    [11] Xun W B,Shao J H,Shen Q R,et al. Rhizosphere microbiome:Functional compensatory assembly for plant fitness[J]. Computational and Structural Biotechnology Journal,2021,19:5487-5493.
    [12] Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000. [李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.]
    [13] Zhang J Y,Liu Y X,Guo X X,et al. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols,2021,16(2):988-1012.
    [14] Wang D M,Jia Y,Cui J Z. Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity[J]. Chinese Agricultural Science Bulletin,2009,25(4):124-128. [王东明,贾媛,崔继哲. 盐胁迫对植物的影响及植物盐适应性研究进展[J]. 中国农学通报,2009,25(4):124-128.]
    [15] Liu C Q,Yang J S,Chen D M,et al. Responses to salt stress of crops different in salt tolerance[J]. Acta Pedologica Sinica,2005,42(6):993-998. [刘春卿,杨劲松,陈德明,等. 不同耐盐性作物对盐胁迫的响应研究[J]. 土壤学报,2005,42(6):993-998.]
    [16] Zhu H,Zu Y G,Wang W J,et al. Effect of proline on plant growth under different stress conditions[J]. Journal of Northeast Forestry University,2009,37(4):86-89.[朱虹,祖元刚,王文杰,等. 逆境胁迫条件下脯氨酸对植物生长的影响[J]. 东北林业大学学报,2009,37(4):86-89.]
    [17] Sarkar A,Ghosh P K,Pramanik K,et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress[J]. Research in Microbiology,2018,169(1):20-32.
    [18] Lundberg D S,Lebeis S L,Paredes S H,et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature,2012,488(7409):86-90.
    [19] Vessey J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil,2003,255(2):571-586.
    [20] Kang S M,Radhakrishnan R,Khan A L,et al. Gibberellin secreting rhizobacterium,Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions[J]. Plant Physiology Biochemistry,2014,84:115-124.
    [21] Singh S,Singh U B,Trivedi M,et al. Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata- modulated biochemical responses provide ecological fitness in maize(Zea mays L.)grown in saline sodic soil[J]. International Journal of Environmental Research and Public Health,2020,17(1):253.
    [22] Vives-Peris V,Gomez-Cadenas A,Perez-Clemente R M. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp[J]. Plant Cell Reports,2018,37(11):1557-1569.
    [23] Win K T,Tanaka F,Okazaki K,et al. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production,resulting in improved growth,photosynthetic performance,and ionic balance in tomato plants[J]. Plant Physiology and Biochemmistry,2018,127:599-607.
    [24] Park M S,Jung S R,Lee K H,et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov. isolated from roots of sand-dune plants[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56:433-438.
    [25] Bhise K K,Bhagwat P K,Dandge P B. Synergistic effect of Chryseobacterium gleum sp SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L[J]. 3 Biotech,2017,7(2):105.
    [26] Abbas R,Rasul S,Aslam K,et al. Halotolerant PGPR:A hope for cultivation of saline soils[J]. Journal of King Saud University Science,2019,31:1195-1201.
    [27] Sunita K,Mishra I,Mishra J,et al. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants[J]. Frontiers in Microbiology,2020,11:567768.
    [28] Wippel K,Tao K,Niu Y L,et al. Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota[J]. Nature Microbiology,2021,6(9):1150-1162.
    [29] Chen X J,Liu K M,Xuan M G,et al. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment[J]. Journal of Nanjing Agricultural University,2020,43(3):452-459. [陈小娟,刘铠鸣,宣明刚,等. 增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果[J]. 南京农业大学学报,2020,43(3):452-459.]
    [30] Yu Y N,Wu H Y,Wang P X,et al. Biological effect of Trichoderma-enriched biofertilizers on cabbage cultivation in coastal saline soil[J]. Acta Pedologica Sinica,2022,59(4):1112-1124. [于亚楠,邬海燕,王盼星,等. 木霉生物有机肥应用于海滨盐土甘蓝种植的生物效应[J]. 土壤学报,2022,59(4):1112-1124.]
    [31] Liang H B,Zhao L,Zhou Y P,et al. Effects of rhizosphere growth-promoting bacteria on soil improvement,crop yield and quality in saline-alkali land-A meta-analysis[J]. Soils,2022,54(6):1257-1264. [梁洪榜,赵丽,周云鹏,等. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响——基于Meta分析[J]. 土壤,2022,54(6):1257-1264. ]
    [32] Cui H W,Ma W G. Advances in seed coating agents and coating methods[J]. Seed,2015,34(1):48-53. [崔华威,马文广. 种子包衣剂及包衣方法研究进展[J]. 种子,2015,34(1):48-53.]
    [33] Zhao L L,Nie L S,Zhu Q K,et al. Seed coating and its application in China[J]. Chinese Agricultural Science Bulletin,2009,25(23):126-131. [赵磊磊,聂立水,朱清科,等. 种子包衣及其在中国的应用研究[J]. 中国农学通报,2009,25(23):126-131.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马爱媛,任轶,汪姣,严河,石晨雨,沈其荣,张瑞福,荀卫兵.提高水稻耐盐能力的根际核心菌株筛选及应用[J].土壤学报,2024,61(5):1410-1420. DOI:10.11766/trxb202302190069 MA Aiyuan, REN Yi, WANG Jiao, YAN He, SHI Chenyu, SHEN Qirong, ZHANG Ruifu, XUN Weibing. Isolation and Application of Rhizosphere Core Strains to Improve Salt Tolerance of Rice[J]. Acta Pedologica Sinica,2024,61(5):1410-1420.

复制
分享
文章指标
  • 点击次数:521
  • 下载次数: 1514
  • HTML阅读次数: 764
  • 引用次数: 0
历史
  • 收稿日期:2023-02-19
  • 最后修改日期:2023-06-13
  • 录用日期:2023-08-17
  • 在线发布日期: 2023-08-24
文章二维码