大气CO2浓度升高和温升对水稻纹枯病侵染后的相关蛋白和防御酶的影响
作者:
作者单位:

1.土壤与农业可持续发展国家重点实验室中国科学院南京土壤研究所;2.中国科学院大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31870423)、广东省科技厅重点项目(2020B0202010006)和南京市科技局碳中和碳达峰科技专项(20221103)共同资助


Effects of Free-air CO2 Enrichment and Temperature Increase on Related Proteins and Defense Enzymes in Plants Infected with Rice Sheath Blight
Author:
Affiliation:

Insititute of soil science

Fund Project:

Supported by the National Natural Science Foundation of China (No. 31870423), the Key-Area Research and Development Program of Guangdong Province, China (No. 2020B0202010006), and the Carbon Peaking and Carbon Neutrality Special Fund for Science and Technology from Nanjing Science and Technology Bureau (No. 20221103)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    纹枯病(sheath blight)作为一种土传病害,其发生和发展严重威胁到水稻(Oryza sativa L.)的生产。目前,大气CO2浓度([CO2])和温度升高如何影响感病植株内病程相关蛋白(pathogenesis related proteins, PR蛋白)和防御酶尚不清楚。本研究以纹枯病易感品种(Lemont)和抗性品种(YSBR1)为实验材料,利用田间开放式自由大气[CO2]和温度升高(T-FACE)平台设置四个处理:对照、[CO2]升高([CO2]升高至590 μmol·mol-1)、温升(冠层温度升高2 ℃)及[CO2]升高和温升交互,通过人工接种R. solani,探究不同抗性品种叶片和茎鞘PR蛋白与防御酶活性,以及土壤基本理化性状的响应。研究结果表明:高[CO2]和温升下耕作土制成的土壤浸提液培养基中R. solani生长速率无显著差异,接种R. solani后病斑发展速率与土壤基本理化性状无关。水稻植株感病后,两个品种叶片和茎鞘中PR蛋白和相关防御酶表现出明显差异,且在高[CO2]和温升条件下,该差异进一步增大。对于茎鞘中的PR蛋白和防御酶,高[CO2]和温升交互处理明显增加Lemont和YSBR1茎鞘中过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)、β-1,3-葡聚糖酶(GLU)和超氧化物歧化酶(SOD)活性。对于两个水稻品种,当R. solani入侵后,在各处理下,YSBR1叶片中PR蛋白和相关防御酶以及茎鞘中SOD和CAT活性均显著高于Lemont,且YSBR1病斑发展速率显著低于Lemont。在整个发病过程中,温升处理及其与高[CO2]互作处理均显著增加易感品种Lemont的病斑发展速率(增加了21% ~ 45%),而对抗性品种YSBR1的病斑发展速率无显著影响。相关性分析结果表明,各处理下Lemont和YSBR1植株纹枯病病斑的发展速率均与其茎鞘中GLU活性存在显著正相关。因而,在R. solani侵染后,抗病品种中较高的PR蛋白和防御酶活形成的防卫反应,能够有效减轻未来高[CO2]和温升条件对纹枯病病斑发展速度的影响。研究结果对选育纹枯病抗性品种来适应未来气候变化背景下的水稻生产提供重要的借鉴意义。

    Abstract:

    【Objective】Sheath blight (ShB) is a soil-borne disease, whose occurrence and development seriously threatens rice (Oryza sativa L.) production. However, it is still unclear how elevated CO2 concentration ([CO2]) and temperature affect pathogenesis-related proteins (PR proteins) and defense enzymes in plants infected with Rhizoctonia solani.【Method】In this study, temperature by free-air CO2 enrichment (T-FACE) system was used with four treatments: ambient condition; elevated [CO2] ([CO2] up to 590 μmol·mol-1); elevated temperature (temperature increased 2 ℃); the combination of elevated [CO2] and elevated temperature. Two cultivars (a susceptible variety, Lemont and a resistant variety, YSBR1) were planted to explore the response of PR proteins and defense enzymes activities in leaves and stems for two cultivars by artificial inoculation of R. solani, as well as basic physical and chemical properties of soil.【Result】Results indicated that there was no significant difference in the growth rate of R. solani on soil extract medium, which was made by bulk soil under elevated [CO2] and temperature. After inoculation with R. solani, the development rate of the ShB lesion was not related to the basic physical and chemical properties of soil. The combination of elevated [CO2] and elevated temperature induced different effects on PR proteins and defense enzymes activities in the leaves of two cultivars. For the PR proteins and defense enzymes in stems, the combination of elevated [CO2] and elevated temperature obviously increased the catalase (CAT), phenylalanine ammonia-lyase (PAL), β-1, 3-glucanase (GLU) or superoxide dismutase (SOD) activities for both Lemont and YSBR1. For different cultivars, after being infected with R. solani, the activities of PR proteins and defense enzymes in the leaves and SOD and CAT in the stems for YSBR1 were significantly higher than those for Lemont under different treatments, and the development rate of ShB lesion for YSBR1 was significantly lower than that for Lemont. During the whole disease infection, elevated [CO2] and the combination of elevated [CO2] and elevated temperature both significantly increased the development rate of rice ShB for Lemont by 21%-45%, but not for YSBR1. The correlation analysis showed that under different [CO2] and temperature treatments, the development rate of ShB was significantly positively correlated with GLU activity in stems for Lemont and YSBR1.【Conclusion】After inoculated R.solani, the defense reaction formed by PR proteins and defense enzymes in resistant cultivar can effectively reduce the effect of elevated [CO2] and temperature on the development rate of ShB in the future. This study can provide applications for breeding ShB-resistant cultivars to ensure global rice production under future climate change.

    参考文献
    相似文献
    引证文献
引用本文

沈敏,蔡创,宋练,张继双,陶冶,王东明,杨雄,韦薇,朱春梧.大气CO2浓度升高和温升对水稻纹枯病侵染后的相关蛋白和防御酶的影响[J].土壤学报,2024,61(4). DOI:10.11766/trxb202302220074 shenmin, Cai Chuang, Song Lian, Zhang Jishuang, Tao Ye, Wang Dongming, Yang Xiong, Wei Wei, Zhu Chunwu. Effects of Free-air CO2 Enrichment and Temperature Increase on Related Proteins and Defense Enzymes in Plants Infected with Rice Sheath Blight[J]. Acta Pedologica Sinica,2024,61(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-22
  • 最后修改日期:2023-07-10
  • 录用日期:2023-07-27
  • 在线发布日期: 2023-08-08
  • 出版日期: